Thromb Haemost 2005; 93(01): 8-16
DOI: 10.1160/TH04-07-0453
Review Article
Schattauer GmbH

Prevention of cardiovascular disease in type-2 diabetes: How to improve the clinical efficacy of aspirin

Virgilio Evangelista
1   Laboratory of Vascular Biology and Pharmacology, Consorzio Mario Negri Sud, S. Maria Imbaro, Chieti, Italy
,
Licia Totani
1   Laboratory of Vascular Biology and Pharmacology, Consorzio Mario Negri Sud, S. Maria Imbaro, Chieti, Italy
,
Serenella Rotondo
1   Laboratory of Vascular Biology and Pharmacology, Consorzio Mario Negri Sud, S. Maria Imbaro, Chieti, Italy
,
Roberto Lorenzet
2   “Antonio Taticchi“ Unit of Cellular and Molecular Biology of Coagulation Consorzio Mario Negri Sud, S. Maria Imbaro, Chieti, Italy
,
Gianni Tognoni
3   Department of Clinical Pharmacology and Epidemiology, Consorzio Mario Negri Sud, S. Maria Imbaro, Chieti, Italy
,
Giorgia De Berardis
3   Department of Clinical Pharmacology and Epidemiology, Consorzio Mario Negri Sud, S. Maria Imbaro, Chieti, Italy
,
Antonio Nicolucci
3   Department of Clinical Pharmacology and Epidemiology, Consorzio Mario Negri Sud, S. Maria Imbaro, Chieti, Italy
› Author Affiliations
Further Information

Publication History

Received 28 July 2004

Accepted after revision 11 October 2004

Publication Date:
14 December 2017 (online)

Summary

Atherosclerotic cardiovascular disease and its thrombotic complications are the principal causes of morbidity and mortality in patients with type-2 diabetes.Aspirin reduces the risk of thrombotic events in a broad range of patients with vascular disease and, in selected individuals, is beneficial for primary prevention. Although recommended by existing guidelines,in secondary and in primary prevention trials the clinical efficacy of low-dose aspirin in patients with diabetes appears to be substantially lower than in individuals without diabetes. In this review, we discuss possible mechanisms that may contribute to reduce the antithrombotic activity of aspirin in diabetes.We also discuss adjuvant therapies used in diabetic patients that may potentially improve the antithrombotic efficacy of aspirin.

 
  • References

  • 1 Creager MA, Luscher TF, Cosentino F. et al Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: Part I. Circulation 2003; 108: 1527-32.
  • 2 UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type-2 diabetes (UKPDS 33) Lancet. 1998; 352: 837-53.
  • 3 Haffner SM. The importance of hyperglycemia in the nonfasting state to the development of cardiovascular disease. Endocr Rev 1998; 19: 583-92.
  • 4 Helgason CM, Tortorice KL, Winkler SR. et al Aspirin response and failure in cerebral infarction. Stroke 1993; 24: 345-50.
  • 5 Cipollone F, Patrignani P, Greco A. et al Differential suppression of thromboxane biosynthesis by indobufen and aspirin in patients with unstable angina. Circulation 1997; 96: 1109-16.
  • 6 Eikelboom JW, Hirsh J, Weitz I J. et al Aspirin-resistant thromboxane biosynthesis and the risk of myocardial infarction, stroke, or cardiovascular death in patients at high risk for cardiovascular events. Circulation 2002; 105: 1650-5.
  • 7 Gum PA, Kottke-Marchant K, Welsh PA. et al A prospective, blinded determination of the natural history of aspirin resistance among stable patients with cardiovascular disease. J Am Coll Cardiol 2003; 41: 961-5.
  • 8 U.S. Preventive Services Task Force. Aspirin for the primary prevention of cardiovascular events: recommendation and rationale. Ann Intern Med 2002; 136: 157-60.
  • 9 Colwell JA. American Diabetes Association. Aspirin therapy in diabetes. Diabetes Care 2003; 26: S87-S88.
  • 10 Steering Committee of the Physicians' Health Study Research Group Final report on the aspirin component of the ongoing Physicians' Health Study. N Engl J Med 1989; 321: 129-35.
  • 11 Antithrombotic Trialists' Collaboration Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. BMJ 2002; 324: 71-86.
  • 12 ETDRS Investigators. Aspirin effects on mortality and morbidity in patients with diabetes mellitus Early Treatment Diabetic Retinopathy Study report 14. JAMA 1992; 268: 1292-300.
  • 13 Collaborative Group of the Primary Prevention Project Low-dose aspirin and vitamin E in people at cardiovascular risk: a randomised trial in general practice. Collaborative Group of the Primary Prevention Project. Lancet 2001; 357: 89-95.
  • 14 Sacco M, Pellegrini F, Roncaglioni MC. et al PPP Collaborative Group: Primary prevention of cardiovascular events with low-dose aspirin and vitamin E in type-2 diabetic patients: results of the Primary Prevention Project (PPP) trial. Diabetes Care 2003; 26: 3264-72.
  • 15 Meade TW, Brennan PJ. Determination of who may derive most benefit from aspirin in primary prevention: subgroup results from a randomised controlled trial. BMJ 2000; 321: 13-7.
  • 16 Howard PA. Aspirin resistance. Ann Pharmacother 2002; 36: 1620-4.
  • 17 Patrono C. Aspirin resistance: definition, mechanisms and clinical read-outs. J Thromb Haemost 2003; 1: 1710-3.
  • 18 De Gaetano G, Cerletti C. Aspirin resistance: a revival of platelet aggregation tests?. J Thromb Haemost 2003; 1: 2048-50.
  • 19 Dortimer AC, Shenoy PN, Shiroff RA. et al Diffuse coronary artery disease in diabetic patients: fact or fiction?. Circulation 1978; 57: 133-6.
  • 20 Moreno PR, Murcia AM, Palacios IF. et al Coronary composition and macrophage infiltration in atherectomy specimens from patients with diabetes mellitus. Circulation 2000; 102: 2180-4.
  • 21 Ridker PM, Hennekens CH, Buring JE. et al C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Eng J Med 2000; 342: 836-43.
  • 22 Ridker PM, Buring JE, Cook NR. et al C-reactive protein, the metabolic syndrome, and risk of incident cardiovascular events: an 8-year follow-up of 14 719 initially healthy American women. Circulation 2003; 107: 391-7.
  • 23 Chu NV, Kong AP, Kim DD. et al Differential effects of metformin and troglitazone on cardiovascular risk factors in patients with type-2 diabetes. Diabetes Care 2002; 25: 542-9.
  • 24 Haffner SM, Greenberg AS, Weston WM. et al Effect of rosiglitazone treatment on nontraditional markers of cardiovascular disease in patients with type-2 diabetes mellitus. Circulation 2002; 106: 679-84.
  • 25 Pasceri V, Willerson JT, Yeh ET. Direct proinflammatory effect of C-reactive protein on human endothelial cells. Circulation 2000; 102: 2165-8.
  • 26 Verma S, Wang CH, Li SH. et al A self-fulfilling prophecy: C-reactive protein attenuates nitric oxide production and inhibits angiogenesis. Circulation 2002; 106: 913-9.
  • 27 Verma S, Wang CH, Weisel RD. et al Hyperglycemia potentiates the proatherogenic effects of C-reactive protein: reversal with rosiglitazone. J Mol Cell Cardiol 2003; 35: 417-9.
  • 28 Pradhan AD, Manson JE, Rifai N. et al C-reactive protein, interleukin 6, and risk of developing type-2 diabetes mellitus. JAMA 2001; 286: 327-34.
  • 29 Marx N, Imhof A, Froehlich J. et al Effect of rosiglitazone treatment on soluble CD40L in patients with type-2 diabetes and coronary artery disease. Circulation 2003; 107: 1954-7.
  • 30 Varo N, Vicent D, Libby P. et al Elevated plasma levels of the atherogenic mediator soluble CD40 ligand in diabetic patients: a novel target of thiazolidinediones. Circulation 2003; 107: 2664-9.
  • 31 Schonbeck U, Libby P. CD40 signaling and plaque instability. Circ Res 2001; 89: 1092-103.
  • 32 Urbich C, Dernbach E, Aicher A. et al CD40 ligand inhibits endothelial cell migration by increasing production of endothelial reactive oxygen species. Circulation 2002; 106: 981-86.
  • 33 Miller DL, Yaron R, Yellin MJ. CD40L-CD40 interactions regulate endothelial cell surface tissue factor and thrombomodulin expression. J Leukoc Biol 1998; 63: 373-9.
  • 34 Henn V, Slupsky JR, Grafe M. et al CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature 1998; 391: 591-4.
  • 35 Mach F, Schonbeck U, Sukhova GK. et al Reduction of atherosclerosis in mice by inhibition of CD40 signalling. Nature 1998; 394: 200-3.
  • 36 Andre P, Prasad KS, Denis CV. et al CD40L stabilizes arterial thrombi by a beta3 integrin--dependent mechanism. Nat Med 2002; 8: 247-52.
  • 37 De Vriese AS, Verbeuren TJ, Van de Voorde J. et al Endothelial dysfunction in diabetes. Br J Pharmacol 2000; 130: 963-74.
  • 38 Schmidt AM, Yan SD, Wautier JL. et al Activation of receptor for advanced glycation end products: a mechanism for chronic vascular dysfunction in diabetic vasculopathy and atherosclerosis. Circ Res 1999; 84: 489-97.
  • 39 Biondi-Zoccai GG, Abbate A, Liuzzo G. et al Atherothrombosis, inflammation, and diabetes. J Am Coll Cardiol 2003; 41: 1071-7.
  • 40 Ross R. Atherosclerosis--an inflammatory disease. N Engl J Med 1999; 340: 115-26.
  • 41 Morigi M, Angioletti S, Imberti B. et al Leukocyte-endothelial interaction is augmented by high glucose concentrations and hyperglycemia in a NF-kB-dependent fashion. J Clin Invest 1998; 101: 1905-15.
  • 42 Marfella R, Esposito K, Giunta R. et al Circulating adhesion molecules in humans: role of hyperglycemia and hyperinsulinemia. Circulation 2000; 101: 2247-51.
  • 43 Steiner M, Reinhardt KM, Krammer B. et al Increased levels of soluble adhesion molecules in type-2 (non-insulin dependent) diabetes mellitus are independent of glycaemic control. Thromb Haemost 1994; 72: 979-84.
  • 44 Cominacini L, Fratta Pasini A, Garbin U. et al Elevated levels of soluble E-selectin in patients with IDDM and NIDDM: relation to metabolic control. Diabetologia 1995; 38: 1122-4.
  • 45 Ceriello A, Falleti E, Bortolotti N. et al Increased circulating intercellular adhesion molecule-1 levels in type II diabetic patients: the possible role of metabolic control and oxidative stress. Metabolism 1996; 45: 498-501.
  • 46 Otsuki M, Hashimoto K, Morimoto Y. et al Circulating vascular cell adhesion molecule-1 (VCAM-1) in atherosclerotic NIDDM patients. Diabetes 1997; 46: 2096-101.
  • 47 Albertini JP, Valensi P, Lormeau B. et al Elevated concentrations of soluble E-selectin and vascular cell adhesion molecule-1 in NIDDM. Effect of intensive insulin treatment. Diabetes Care 1998; 21: 1008-13.
  • 48 Basta G, Lazzerini G, Massaro M. et al Advanced glycation end products activate endothelium through signal-transduction receptor RAGE. A mechanism for amplification of inflammatory responses. Circulation 2002; 105: 816-22.
  • 49 Sampson MJ, Davies IR, Brown JC. et al Monocyte and neutrophil adhesion molecule expression during acute hyperglycemia and after antioxidant treatment in type-2 diabetes and control patients. Arterioscler Thromb Vasc Biol 2002; 22: 1187-93.
  • 50 Shanmugam N, Reddy MA, Guha M. et al High glucose-induced expression of proinflammatory cytokine and chemokine genes in monocytic cells. Diabetes 2003; 52: 1256-64.
  • 51 Srinivasan S, Yeh M, Danziger EC. et al Glucose regulates monocyte adhesion through endothelial production of interleukin-8. Circ Res 2003; 92: 371-7.
  • 52 Davi G, Averna M, Catalano I. et al Platelet function in patients with type-2 diabetes mellitus: the effect of glycaemic control. Diabetes Res 1989; 10: 7-12.
  • 53 Rauch U, Ziegler D, Piolot R. et al Platelet activation in diabetic cardiovascular autonomic neuropathy. Diabet Med 1999; 16: 848-52.
  • 54 Ceriello A. Coagulation activation in diabetes mellitus: the role of hyperglycaemia and therapeutic prospects. Diabetologia 1993; 36: 1119-25.
  • 55 Rao AK, Chouhan V, Chen X. et al Activation of the tissue factor pathway of blood coagulation during prolonged hyperglycemia in young healthy men. Diabetes 1999; 48: 1156-61.
  • 56 Bazzan M, Gruden G, Stella S. et al Microalbuminuria in IDDM is associated with increased expression of monocyte procoagulant activity. Diabetologia 1998; 41: 767-71.
  • 57 Takahashi T, Hato F, Yamane T. et al Increased spontaneous adherence of neutrophils from type-2 diabetic patients with overt proteinuria: possible role of the progression of diabetic nephropathy. Diabetes Care 2000; 23: 417-8.
  • 58 Shurtz-Swirski R, Sela S, Herskovits AT. et al Involvement of peripheral polymorphonuclear leukocytes in oxidative stress and inflammation in type-2 diabetic patients. Diabetes Care 2001; 24: 104-10.
  • 59 Konieczkowski M, Skrinska VA. Increased synthesis of thromboxane A(2) and expression of procoagulant activity by monocytes in response to arachidonic acid in diabetes mellitus. Prostaglandins Leukot Essent Fatty Acids 2001; 65: 133-8.
  • 60 Jude B, Watel A, Fontaine O. et al Distinctive features of procoagulant response of monocytes from diabetic patients. Haemostasis 1989; 19: 65-73.
  • 61 Diamant M, Nieuwland R, Pablo RF. et al Elevated numbers of tissue-factor exposing microparticles correlate with components of the metabolic syndrome in uncomplicated type-2 diabetes mellitus. Circulation 2002; 106: 2442-7.
  • 62 Rauch U, Crandall J, Osende I J. et al Increased thrombus formation relates to ambient blood glucose and leukocyte count in diabetes mellitus type-2. Am J Cardiol 2000; 86: 246-9.
  • 63 Halushka PV, Rogers RC, Loadholt CB. et al Increased platelet thromboxane synthesis in diabetes mellitus. J Lab Clin Med 1981; 97: 87-96.
  • 64 Davi G, Catalano I, Averna M. et al Thromboxane biosynthesis and platelet function in type II diabetes mellitus. N Engl J Med 1990; 322: 1769-74.
  • 65 Vinik I A, Erbas T, Park TS. et al Platelet dysfunction in type-2 diabetes. Diabetes Care 2001; 24: 1476-85.
  • 66 Halushka PV, Lurie D, Colwell JA. Increased synthesis of prostaglandin-E-like material by platelets from patients with diabetes mellitus. N Engl J Med 1977; 297: 1306-10.
  • 67 Tomaselli L, Cerletti C, de Gaetano G. et al Normal platelet function, but increased platelet activation in vivo in diabetic patients. Thromb Haemost 1990; 64: 604.
  • 68 Kutti J, Wadenvik H, Henestam B. et al Evaluation of platelet reactivity in diabetes mellitus. Acta Med Scand 1986; 219: 195-9.
  • 69 DiMinno G, Silver MJ, Cerbone AM. et al Platelet fibrinogen binding in diabetes mellitus. Differences between binding to platelets from nonretinopathic and retinopathic diabetic patients. Diabetes 1986; 35: 182-5.
  • 70 Hu H, Li N, Yngen M. et al Enhanced leukocyteplatelet cross-talk in Type-1 diabetes mellitus: relationship to microangiopathy. J Thromb Haemost 2004; 2: 58-64.
  • 71 Trovati M, Anfossi G, Cavalot F. et al Insulin directly reduces platelet sensitivity to aggregating agents. Studies in vitro and in vivo. Diabetes 1988; 37: 780-6.
  • 72 Trovati M, Mularoni EM, Burzacca S. et al Impaired insulin-induced platelet antiaggregating effect in obesity and in obese NIDDM patients. Diabetes 1995; 44: 1318-22.
  • 73 Westerbacka J, Yki-Jarvinen H, Turpeinen A. et al Inhibition of platelet-collagen interaction: an in vivo action of insulin abolished by insulin resistance in obesity. Arterioscler Thromb Vasc Biol 2002; 22: 167-72.
  • 74 Hu H, Li N, Ekberg K. et al Insulin, but not proinsulin C-peptide, enhances platelet fibrinogen binding in vitro in Type 1 diabetes mellitus and healthy subjects. Thromb Res 2002; 106: 91-5.
  • 75 Anfossi G, Massucco P, Mattiello L. et al Insulin exerts opposite effects on platelet function at physiological and supraphysiological concentrations. Thromb Res 1996; 82: 57-68.
  • 76 Carvalho AC, Colman RW, Lees RS. Platelet function in hyperlipoproteinemia. N Engl J Med 1974; 290: 434-8.
  • 77 Davi G, Gresele P, Violi F. et al Diabetes mellitus, hypercholesterolemia, and hypertension but not vascular disease per se are associated with persistent platelet activation in vivo. Evidence derived from the study of peripheral arterial disease. Circulation 1997; 96: 69-75.
  • 78 Broijersen A, Hamsten A, Erikson M. et al Platelet activity in vivo in hyperlipoproteinemia- Importance of combined hyperlipemia. Thromb Haemost 1998; 79: 268-75.
  • 79 Friend M, Vucenik I, Miller M. Research pointers: Platelet responsiveness to aspirin in patients with hyperlipidaemia. BMJ 2003; 326: 82-3.
  • 80 Gum PA, Kottke-Marchant K, Poggio ED. et al Profile and prevalence of aspirin resistance in patients with cardiovascular disease. Am J Cardiol 2001; 88: 230-5.
  • 81 Watala C, Golanski J, Pluta J. et al Reduced sensitivity of platelets from type-2 diabetic patients to acetylslicylic acid (aspirin) its relation to metabolic control. Thromb Res 2004; 113: 101-3.
  • 82 Tschoepe D, Rauch U, Schwippert B. Platelet-leukocyte- cross-talk in diabetes mellitus. Horm Metab Res 1997; 29: 631-5.
  • 83 Patrignani P. Aspirin insensitive eicosanoid biosynthesis in cardiovascular disease. Thromb Res 2003; 110: 281-6.
  • 84 Cosentino F, Eto M, De Paolis P. et al High glucose causes upregulation of cyclooxygenase-2 and alters prostanoid profile in human endothelial cells: role of protein kinase C and reactive oxygen species. Circulation 2003; 107: 1017-23.
  • 85 Weber AA, Zimmermann KC, Meyer-Kirchrath J. et al Cyclooxygenase-2 in human platelets as a possible factor in aspirin resistance. Lancet 1999; 353: 900.
  • 86 Zimmermann N, Wenk A, Kim U. et al Functional and biochemical evaluation of platelet aspirin resistance after coronary artery bypass surgery. Circulation 2003; 108: 542-7.
  • 87 Patrignani P, Sciulli MG, Manarini S. et al COX-2 is not involved in thromboxane biosynthesis by activated human platelets. J Physiol Pharmacol 1999; 50: 661-7.
  • 88 Halushka MK, Walker LP, Halushka PV. Genetic variation in cyclooxygenase 1: effects on response to aspirin. Clin Pharmacol Ther 2003; 73: 122-30.
  • 89 Macchi L, Christiaens L, Brabant S. et al Resistance in vitro to low-dose aspirin is associated with platelet PlA1 (GP IIIa) polymorphism but not with C807T(GP Ia/IIa) and C-5T Kozak (GP Ibalpha) polymorphisms. J Am Coll Cardiol 2003; 42: 1115-9.
  • 90 Bonetti PO, Lerman LO, Napoli C. et al Statin effects beyond lipid lowering--are they clinically relevant?. Eur Heart J 2003; 24: 225-48.
  • 91 Schiffrin EL. Vascular and cardiac benefits of angiotensin receptor blockers. Am J Med 2002; 113: 409-18.
  • 92 Plutzky J. The potential role of peroxisome proliferator- activated receptors on inflammation in type-2 diabetes mellitus and atherosclerosis. Am J Cardiol 2003; 92: 34J-41J.
  • 93 Law MR, Wald NJ, Rudnicka AR. Quantifying effect of statins on low density lipoprotein cholesterol, ischaemic heart disease, and stroke: systematic review and meta-analysis. BMJ 2003; 326: 1423-9.
  • 94 Ridker PM, Rifai N, Clearfield M. et al Air Force/ Texas Coronary Atherosclerosis Prevention Study Investigators. Measurement of C-reactive protein for the targeting of statin therapy in the primary prevention of acute coronary events. N Engl J Med 2001; 344: 1959-65.
  • 95 Munford RS. Statins and the acute-phase response. N Engl J Med 2001; 344: 2016-8.
  • 96 Engstrom G, Lind P, Hedblad B. et al Effects of cholesterol and inflammation-sensitive plasma proteins on incidence of myocardial infarction and stroke in men. Circulation 2002; 105: 2632-7.
  • 97 van der Wal AC, Becker AE, van der Loos CM. et al Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation 1994; 89: 36-44.
  • 98 Cipollone F, Prontera C, Pini B. et al Overexpression of functionally coupled cyclooxygenase-2 and prostaglandin E synthase in symptomatic atherosclerotic plaques as a basis of prostaglandin E(2)-dependent plaque instability. Circulation 2001; 104: 921-7.
  • 99 Sukhova GK, Williams JK, Libby P. Statins reduce inflammation in atheroma of nonhuman primates independent of effects on serum cholesterol. Arterioscler Thromb Vasc Biol 2002; 22: 1452-8.
  • 100 Weitz-Schmidt G, Welzenbach K, Brinkmann V. et al Statins selectively inhibit leukocyte function antigen-1 by binding to a novel regulatory integrin site. Nat Med 2001; 7: 687-92.
  • 101 Yoshida M, Sawada T, Ishii H. et al Hmg-CoA reductase inhibitor modulates monocyte-endothelial cell interaction under physiological flow conditions in vitro: involvement of Rho GTPase-dependent mechanism. Arterioscler Thromb Vasc Biol 2001; 21: 1165-71.
  • 102 Diomede L, Albani D, Sottocorno M. et al In vivo anti-inflammatory effect of statins is mediated by nonsterol mevalonate products. Arterioscler Thromb Vasc Biol 2001; 21: 1327-32.
  • 103 Endres M, Laufs U, Huang Z. et al Stroke protection by 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase inhibitors mediated by endothelial nitric oxide synthase. Proc Natl Acad Sci USA 1998; 95: 8880-5.
  • 104 Colli S, Eligini S, Lalli M. et al Vastatins inhibit tissue factor in cultured human macrophages. A novel mechanism of protection against atherothrombosis. Arterioscler Thromb Vasc Biol 1997; 17: 265-72.
  • 105 Eto M, Kozai T, Cosentino F. et al Statin prevents tissue factor expression in human endothelial cells: role of Rho/Rho-kinase and Akt pathways. Circulation 2002; 105: 1756-9.
  • 106 Crisby M, Nordin-Fredriksson G, Shah PK. et al Pravastatin treatment increases collagen content and decreases lipid content, inflammation, metalloproteinases, and cell death in human carotid plaques: implications for plaque stabilization. Circulation 2001; 103: 926-33.
  • 107 Steiner G. Treating lipid abnormalities in patients with type-2 diabetes mellitus. Am J Cardiol 2001; 88: 37N-40N.
  • 108 Sowers JR. Effects of statins on the vasculature: Implications for aggressive lipid management in the cardiovascular metabolic syndrome. Am J Cardiol 2003; 91: 14B-22B.
  • 109 Heart Outcomes Prevention Evaluation Study Investigators Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: results of the HOPE study and MICRO-HOPE substudy. Lancet 2000; 355: 253-9.
  • 110 Niskanen L, Hedner T, Hansson L. et al Reduced cardiovascular morbidity and mortality in hypertensive diabetic patients on first-line therapy with an ACE inhibitor compared with a diuretic/beta-blockerbased treatment regimen: a subanalysis of the Captopril Prevention Project. Diabetes Care 2001; 24: 2091-6.
  • 111 Halkin A, Keren G. Potential indications for angiotensin- converting enzyme inhibitors in atherosclerotic vascular disease. Am J Med 2002; 112: 126-34.
  • 112 Schieffer B, Schieffer E, Hilfiker-Kleiner D. et al Expression of angiotensin II and interleukin 6 in human coronary atherosclerotic plaques: potential implications for inflammation and plaque instability. Circulation 2000; 101: 1372-8.
  • 113 Fukuhara M, Geary RL, Diz I D. et al Angiotensin- converting enzyme expression in human carotid artery atherosclerosis. Hypertension 2000; 35: 353-9.
  • 114 Soejima H, Ogawa H, Yasue H. et al Angiotensinconverting enzyme inhibition reduces monocyte chemoattractant protein-1 and tissue factor levels in patients with myocardial infarction. J Am Coll Cardiol 1999; 34: 983-8.
  • 115 Nagata K, Ishibashi T, Sakamoto T. et al Effects of blockade of the renin-angiotensin system on tissue factor and plasminogen activator inhibitor-1 synthesis in human cultured monocytes. J Hypertens 2001; 19: 775-83.
  • 116 Nishimura H, Tsuji H, Masuda H. et al The effects of angiotensin metabolites on the regulation of coagulation and fibrinolysis in cultured rat aortic endothelial cells. Thromb Haemost 1999; 82: 1516-21.
  • 117 Napoleone E, Di Santo A, Camera M. et al Angiotensin- converting enzyme inhibitors downregulatetissue factor synthesis in monocytes. Circ Res 2000; 86: 139-43.
  • 118 Spiegelman BM. Peroxisome proliferator-activated receptor gamma: A key regulator of adipogenesis and systemic insulin sensitivity. Eur J Med Res 1997; 2: 457-64.
  • 119 Delerive P, Fruchart JC, Staels B. Peroxisome proliferator- activated receptors in inflammation control. J Endocrinol 2001; 169: 453-9.
  • 120 Marx N, Schonbeck U, Lazar MA. et al Peroxisome proliferator-activated receptor gamma activators inhibit gene expression and migration in human vascular smooth muscle cells. Circ Res 1998; 83: 1097-103.
  • 121 Shinohara E, Kihara S, Ouchi N. et al Troglitazone suppresses intimal formation following balloon injury in insulin-resistant Zucker fatty rats. Atherosclerosis 1998; 136: 275-9.
  • 122 Jiang C, Ting AT, Seed B. PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature 1998; 391: 82-6.
  • 123 Ricote M, Li AC, Willson TM. et al The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature 1998; 391: 79-82.
  • 124 Jackson SM, Parhami F, Xi XP. et al Peroxisome proliferator-activated receptor activators target human endothelial cells to inhibit leukocyte-endothelial cell interaction. Arterioscler Thromb Vasc Biol 1999; 19: 2094-104.
  • 125 Pasceri V, Wu HD, Willerson JT. et al Modulation of vascular inflammation in vitro and in vivo by peroxisome proliferator-activated receptor-gamma activators. Circulation 2000; 101: 235-8.
  • 126 Toriumi Y, Hiraoka M, Watanabe M. et al Pioglitazone reduces monocyte adhesion to vascular endothelium under flow by modulating RhoA GTPase and focal adhesion kinase. FEBS Lett 2003; 553: 419-22.
  • 127 Li AC, Brown KK, Silvestre MJ. et al Peroxisome proliferator-activated receptor gamma ligands inhibit development of atherosclerosis in LDL receptor-deficient mice. J Clin Invest 2000; 106: 523-31.
  • 128 Shiomi M, Ito T, Tsukada T. et al Combination treatment with troglitazone, an insulin action enhancer, and pravastatin, an inhibitor of HMG-CoA reductase, shows a synergistic effect on atherosclerosis of WHHL rabbits. Atherosclerosis 1999; 142: 345-53.
  • 129 Minamikawa J, Tanaka S, Yamauchi M. et al Potent inhibitory effect of troglitazone on carotid arterial wall thickness in type-2 diabetes. J Clin Endocrinol Metab 1998; 83: 1818-20.
  • 130 Ishizuka T, Itaya S, Wada H. et al Differential effect of the antidiabetic thiazolidinediones troglitazone and pioglitazone on human platelet aggregation mechanism. Diabetes 1998; 47: 1494-500.
  • 131 Hishinuma T, Yamazaki T, Mizugaki M. Troglitazone has a reducing effect on thromboxane production. Prostaglandins Other Lipid Mediat 2000; 62: 135-43.
  • 132 Sidhu JS, Cowan D, Tooze JA. et al Peroxisome proliferator-activated receptor-g agonist rosiglitazone reduces circulating platelet activaty in patients without diabetes mellitus who have coronary artery disease. Am Heart J 2001; 147: e25.
  • 133 Akbiyik F, Ray DM, Gettings KF. et al Human bone marrow megakaryocytes and platelets express PPARgamma, and PPARgamma agonists blunt platelet release of CD40 ligand and thromboxanes. Blood 2004; 104: 1361-8.