Thromb Haemost 2005; 93(01): 40-47
DOI: 10.1160/TH04-07-0435
Blood Coagulation, Fibrinolysis and Cellular Haemostasis
Schattauer GmbH

Two parallel prothrombin activator systems in Australian rough-scaled snake, Tropidechis carinatus

Structural comparison of venom prothrombin activator with blood coagulation factor X
Md. Abu Reza
1   Protein Science Laboratory, Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
,
Sanjay Swarup
1   Protein Science Laboratory, Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
,
Manjunatha R. Kini
1   Protein Science Laboratory, Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
2   Department of Biochemistry and Molecular Biophysics, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia USA
› Author Affiliations
Financial support: This work was supported by the Academic Research Grants from the National University of Singapore
Further Information

Publication History

Received 20 July 2004

Accepted after revision 11 November 2004

Publication Date:
14 December 2017 (online)

Summary

It is uncommon for similar pathways/systems to be involved in highly divergent functions within single organisms. Earlier, we have shown that trocarin D, a venom prothrombin activator, from the Australian rough-scaled snake Tropidechis carinatus, is structurally and functionally similar to the blood coagulation factor Xa (FXa). The presence of a haemostatic system in these snakes implies that they have two parallel prothrombin activating systems: one in the plasma, that participates in the life saving process of blood clotting and the other in their venom, where it acts as a toxin. Here, we report the complete cDNA sequence encoding the blood coagulation factor X (FX) from the liver of T. carinatus. Deduced T. carinatus FX sequence shows ~80% identity with trocarin D but ~50% identity with the mammalian FX. Our present study confirms the presence of two separate genes – one each for FX and trocarin D, that code for similar proteins in T. carinatus snake. These two genes have different expression sites and divergent uses suggesting that snake venom prothrombin activators have probably evolved by the duplication of the liver FX gene and subsequently marked for tissue-specific expression in the venom gland.

 
  • References

  • 1 Suttie JW, Jackson CM. Prothrombin structure, activation, and biosynthesis. Physiol Rev 1977; 57: 1-70.
  • 2 Mann KG. The assembly of blood clotting complexes on membranes. Trends Biochem Sci 1987; 12: 229-33.
  • 3 Rosing J, Tans G, Govers-Riemslag JW. et al The role of phospholipids and factor Va in the prothrombinase complex. J Biol Chem 1980; 255: 274-83.
  • 4 Mann KG, Krishnaswamy S, Lawson JH. Surfacedependent hemostasis. Semin Hematol 1992; 29: 213-26.
  • 5 van Rijn JL, Govers-Riemslag JW, Zwaal RF. et al Kinetic studies of prothrombin activation: effect of factor Va and phospholipids on the formation of the enzyme-substrate complex. Biochemistry 1984; 23: 4557-64.
  • 6 Markland Jr FS. Snake venoms. Drugs 1997; 54 (Suppl. 03) 1-10.
  • 7 Hutton RA, Warrell DA. Action of snake venom components on the haemostatic system. Blood Rev 1993; 7: 176-89.
  • 8 Manjunatha KR, Morita T, Rosing J. Classification and nomenclature of prothrombin activators isolated from snake venoms. Thromb Haemost 2001; 86: 710-11.
  • 9 Joseph JS, Chung MC, Jeyaseelan K. et al Amino acid sequence of trocarin, a prothrombin activator from Tropidechis carinatus venom: its structural similarity to coagulation factor Xa. Blood 1999; 94: 621-31.
  • 10 Joseph JS, Kini RM. Snake venom prothrombin activators homologous to blood coagulation factor Xa. Haemostasis 2001; 31: 234-40.
  • 11 Rao VS, Joseph JS, Kini RM. Group D prothrombin activators from snake venom are structural homologues of mammalian blood coagulation factor Xa. Biochem J 2003; 369 Pt (03) 635-42.
  • 12 Rosing J, Tans G. Structural and functional properties of snake venom prothrombin activators. Toxicon 1992; 30: 1515-27.
  • 13 Tans G, Govers-Riemslag JW, van Rijn JL. et al Purification and properties of a prothrombin activator from the venom of Notechis scutatus scutatus . J Biol Chem 1985; 260: 9366-72.
  • 14 Archer RK. The Haemostatic Mechanism In Man And Other Animals. In Macfarlane RG. editor Blood coagulation in non-human vertebrates. Academic Press; 1970. 121 32.
  • 15 Bahnak BR, Howk R, Morrissey JH. et al Steady state levels of factor X mRNA in liver and Hep G2 cells. Blood 1987; 69: 224-30.
  • 16 Miao CH, Leytus SP, Chung DW. et al Liver-specific expression of the gene coding for human factor X, a blood coagulation factor. J Biol Chem 1992; 267: 7395-01.
  • 17 Rotenberg D, Bamberger ES, Kochva E. Studies on ribonucleic acid synthesis in the venom glands of Vipera palaestinae (Ophidia, Reptilia). Biochem J 1971; 121: 609-12.
  • 18 Paine MJ, Desmond HP, Theakston RD. et al Gene expression in Echis carinatus (carpet viper) venom glands following milking. Toxicon 1992; 30: 379-86.
  • 19 von Heijne G. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res 1986; 14: 4683-90.
  • 20 Ulrich MM, Furie B, Jacobs MR. et al Vitamin K-dependent carboxylation. A synthetic peptide based upon the gamma-carboxylation recognition site sequence of the prothrombin propeptide is an active substrate for the carboxylase in vitro. J Biol Chem 1988; 263: 9697-02.
  • 21 Bristol JA, Furie BC, Furie B. Propeptide processing during factor IX biosynthesis. Effect of point mutations adjacent to the propeptide cleavage site. J Biol Chem 1993; 268: 7577-84.
  • 22 Wasley LC, Rehemtulla A, Bristol JA. et al PACE/ furin can process the vitamin K-dependent pro-factor IX precursor within the secretory pathway. J Biol Chem 1993; 268: 8458-65.
  • 23 Fung MR, Campbell RM, MacGillivray RT. Blood coagulation factor X mRNA encodes a single polypeptide chain containing a prepro leader sequence. Nucleic Acids Res 1984; 12: 4481-92.
  • 24 Lawson JH, Mann KG. Cooperative activation of human factor IX by the human extrinsic pathway of blood coagulation. J Biol Chem 1991; 266: 11317-27.
  • 25 Wesselschmidt R, Likert K, Huang Z. et al Structural requirements for tissue factor pathway inhibitor interactions with factor Xa and heparin. Blood Coagul Fibrinolysis 1993; 4: 661-69.
  • 26 Ahmad SS, Rawala-Sheikh R, Walsh PN. Components and assembly of the factor X activating complex. Semin Thromb Hemost 1992; 18: 311-23.
  • 27 Rao VS, Swarup S, Kini RM. The catalytic subunit of pseutarin C, a group C prothrombin activator from the venom of Pseudonaja textilis, is structurally similar to mammalian blood coagulation factor Xa. Thromb Haemost 2004; 92: 509-21.
  • 28 Jagadeeswaran P, Sheehan JP. Analysis of blood coagulation in the zebrafish. Blood Cells Mol Dis 1999; 25: 239-49.
  • 29 Padmanabhan K, Padmanabhan KP, Tulinsky A. et al Structure of human des(1–45) factor Xa at 2.2 A resolution. J Mol Biol 1993; 232: 947-66.
  • 30 Mizuno H, Fujimoto Z, Atoda H. et al Crystal structure of an anticoagulant protein in complex with the Gla domain of factor X. Proc Natl Acad Sci U S A 2001; 98: 7230-34.
  • 31 Nelsestuen GL, Broderius M, Martin G. Role of gamma-carboxyglutamic acid. Cation specificity of prothrombin and factor X-phospholipid binding. J Biol Chem 1976; 251 (22) 6886-93.
  • 32 Nelsestuen GL, Zytkovicz TH, Howard JB. The mode of action of vitamin K. Identification of gammacarboxyglutamic acid as a component of prothrombin. J Biol Chem 1974; 249: 6347-50.
  • 33 Prendergast FG, Mann KG. Differentiation of metal ion-induced transitions of prothrombin fragment 1. J Biol Chem 1977; 252: 840-50.
  • 34 Borowski M, Furie BC, Bauminger S. et al Prothrombin requires two sequential metal-dependent conformational transitions to bind phospholipid. Conformation- specific antibodies directed against the phospholipid-binding site on prothrombin. J Biol Chem 1986; 261: 14969-75.
  • 35 Soriano-Garcia M, Padmanabhan K, de Vos AM. et al The Ca2+ ion and membrane binding structure of the Gla domain of Ca-prothrombin fragment 1. Biochemistry 1992; 31: 2554-66.
  • 36 Furie B, Furie BC. Molecular basis of vitamin K-dependent gamma-carboxylation. Blood 1990; 75: 1753-62.
  • 37 Drakenberg T, Fernlund P, Roepstorff P. et al beta- Hydroxyaspartic acid in vitamin K-dependent protein C. Proc Natl Acad Sci U S A 1983; 80: 1802-06.
  • 38 Stenflo J, Lundwall A, Dahlback B. beta-Hydroxyasparagine in domains homologous to the epidermal growth factor precursor in vitamin K-dependent protein S. Proc Natl Acad Sci U S A 1987; 84: 368-72.
  • 39 McMullen BA, Fujikawa K, Kisiel W. et al Complete amino acid sequence of the light chain of human blood coagulation factor X: evidence for identification of residue 63 as beta-hydroxyaspartic acid. Biochemistry 1983; 22: 2875-84.
  • 40 Fujikawa K, Titani K, Davie EW. Activation of bovine factor X (Stuart factor): conversion of factor Xaalpha to factor Xabeta. Proc Natl Acad Sci U S A 1975; 72: 3359-63.
  • 41 Walsh MT, Watzlawick H, Putnam FW. et al Effect of the carbohydrate moiety on the secondary structure of beta 2-glycoprotein. I. Implications for the biosynthesis and folding of glycoproteins. Biochemistry 1990; 29: 6250-57.
  • 42 Rudd PM, Joao HC, Coghill E. et al Glycoforms modify the dynamic stability and functional activity of an enzyme. Biochemistry 1994; 33: 17-22.
  • 43 Kobata A. Structures and functions of the sugar chains of glycoproteins. Eur J Biochem 1992; 209: 483-01.
  • 44 Wang C, Eufemi M, Turano C. et al Influence of the carbohydrate moiety on the stability of glycoproteins. Biochemistry 1996; 35: 7299-307.
  • 45 Inoue K, Morita T. Identification of O-linked oligosaccharide chains in the activation peptides of blood coagulation factor X. The role of the carbohydrate moieties in the activation of factor X. Eur J Biochem 1993; 218: 153-63.
  • 46 Sinha U, Wolf DL. Carbohydrate residues modulate the activation of coagulation factor X. J Biol Chem 1993; 268: 3048-51.
  • 47 Joseph JS, Valiyaveettil M, Gowda DC. et al Occurrence of O-linked Xyl-GlcNAc and Xyl-Glc disaccharides in trocarin, a factor Xa homolog from snake venom. J Thromb Haemost 2003; 1: 545-50.
  • 48 Speijer H, Govers-Riemslag JW, Zwaal RF. et al Prothrombin activation by an activator from the venom of Oxyuranus scutellatus (Taipan snake). J Biol Chem 1986; 261: 13258-67.
  • 49 Hasson SS, Theakston RD, Harrison RA. Cloning of a prothrombin activator-like metalloproteinase from the West African saw-scaled viper, Echis ocellatus . Toxicon 2003; 42: 629-34.
  • 50 Gao R, Manjunatha KR, Gopalakrishnakone P. A novel prothrombin activator from the venom of Micropechis ikaheka: isolation and characterization. Arch Biochem Biophys 2002; 408: 87-92.
  • 51 Silva MB, Schattner M, Ramos CR. et al A prothrombin activator from Bothrops erythromelas (jararaca- da-seca) snake venom:characterization and molecular cloning. Biochem J 2003; 369: 129-39.
  • 52 Davidson CJ, Tuddenham EG, McVey JH. 450 million years of hemostasis. J Thromb Haemost 2003; 1: 1487-94.
  • 53 Jiang Y, Doolittle RF. The evolution of vertebrate blood coagulation as viewed from a comparison of puffer fish and sea squirt genomes. Proc Natl Acad Sci U S A 2003; 100: 7527-32.
  • 54 Doolittle RF, Feng DF. Reconstructing the evolution of vertebrate blood coagulation from a consideration of the amino acid sequences of clotting proteins. Cold Spring Harb Symp Quant Biol 1987; 52: 869-74.
  • 55 Hackett E, Hann C. Slow clotting of reptile bloods. J Comp Pathol 1967; 77: 175-80.
  • 56 Rowley AF, Hill DJ, Ray CE. et al Haemostasis in fish--an evolutionary perspective. Thromb Haemost 1997; 77: 227-33.
  • 57 Frost CL, Naude RJ, Oelofsen W. et al Comparative blood coagulation studies in the ostrich. Immunopharmacology 1999; 45: 75-81.
  • 58 Joseph JS, Chung MC, Mirtschin PJ. et al Effect of snake venom procoagulants on snake plasma: implications for the coagulation cascade of snakes. Toxicon 2002; 40: 175-83.
  • 59 Racchi M, Watzke HH, High KA. et al Human coagulation factor X deficiency caused by a mutant signal peptide that blocks cleavage by signal peptidase but not targeting and translocation to the endoplasmic reticulum. J Biol Chem 1993; 268: 5735-40.