Thromb Haemost 2004; 92(01): 151-161
DOI: 10.1160/TH03-11-0728
Cell Signalling and Vessel Remodelling
Schattauer GmbH

Manganese-induced integrin affinity maturation promotes recruitment of αVβ3 integrin to focal adhesions in endothelial cells: evidence for a role of phosphatidylinositol 3-kinase and Src

Olivier Dormond
1   Centre Pluridisciplinaire d’Oncologie (CePO), Centre Hospitalier Universitaire Vaudois (CHUV) and Swiss Institute for Experimental Cancer Research (ISREC), Lausanne and Epalinges, Switzerland
,
Lionel Ponsonnet
1   Centre Pluridisciplinaire d’Oncologie (CePO), Centre Hospitalier Universitaire Vaudois (CHUV) and Swiss Institute for Experimental Cancer Research (ISREC), Lausanne and Epalinges, Switzerland
,
Meriem Hasmim
1   Centre Pluridisciplinaire d’Oncologie (CePO), Centre Hospitalier Universitaire Vaudois (CHUV) and Swiss Institute for Experimental Cancer Research (ISREC), Lausanne and Epalinges, Switzerland
,
Alessandro Foletti
1   Centre Pluridisciplinaire d’Oncologie (CePO), Centre Hospitalier Universitaire Vaudois (CHUV) and Swiss Institute for Experimental Cancer Research (ISREC), Lausanne and Epalinges, Switzerland
,
Curzio Rüegg
1   Centre Pluridisciplinaire d’Oncologie (CePO), Centre Hospitalier Universitaire Vaudois (CHUV) and Swiss Institute for Experimental Cancer Research (ISREC), Lausanne and Epalinges, Switzerland
› Author Affiliations
Financial support: This work was supported by grants from the Swiss National Science Foundation (31-63752), Oncosuisse (01174-09-2001), the Fondazione San Salvatore, by the National Center of Competence in Research (NCCR) Molecular Oncology, a research instrument of the Swiss National Science Foundation, and by a MD/PhD fellowship from the Swiss National Science Foundation (31-51879.97 to O.D.)
Further Information

Publication History

Received 30 November 2003

Accepted after resubmission 04 May 2004

Publication Date:
29 November 2017 (online)

Summary

Integrin activity is controlled by changes in affinity (i.e. ligand binding) and avidity (i.e. receptor clustering). Little is known, however, about the effect of affinity maturation on integrin avidity and on the associated signaling pathways. To study the effect of affinity maturation on integrin avidity, we stimulated human umbilical vein endothelial cells (HUVEC) with MnCl2 to increase integrin affinity and monitored clustering of β1 and β3 integrins. In unstimulated HUVEC, β1 integrins were present in fibrillar adhesions, while αVβ3 was detected in peripheral focal adhesions. Clustered β1 and β3 integrins expressed high affinity/ligand-induced binding site (LIBS) epitopes. MnCl2-stimulation promoted focal adhesion and actin stress fiber formation at the basal surface of the cells, and strongly enhanced mAb LM609 staining and expression of β3 high affinity/LIBS epitopes at focal adhesions. MnCl2-induced αVβ3 clustering was blocked by a soluble RGD peptide, by wortmannin and LY294002, two parmacological inhibitors of phosphatidylinositol 3-kinase (PI 3-K), and by over-expressing a dominant negative PI 3-K mutant protein. Conversely, over-expression of active PI 3-K and pharmacological inhibiton of Src with PP2 and CGP77675, enhanced basal and manganese-induced αVβ3 clustering. Transient increased phosphorylation of protein kinase B/Akt, a direct target of PI 3K, occurred upon manganese stimulation. MnCl2 did not alter β1 integrin distribution or β1 high-affinity/LIBS epitope expression. Based on these results, we conclude that MnCl2-induced αVβ3 integrin affinity maturation stimulates focal adhesion and actin stress fiber formation, and promotes recruitment of high affinity αVβ3 to focal adhesions. Affinity-modulated αVβ3 clustering requires PI3-K signaling and is negatively regulate by Src.

 
  • References

  • 1 Hynes O. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 1992; 69: 11-25.
  • 2 Hynes RO. A reevaluation of integrins as regulators of angiogenesis. Nat Med 2002; 08: 918-21.
  • 3 Miranti CK, Brugge JS. Sensing the environment: a historical perspective on integrin signal transduction. Nat Cell Biol 2002; 04: E83-90.
  • 4 Ruegg C, Mariotti A. Vascular integrins: pleiotropic adhesion and signaling molecules in vascular homeostasis and angiogenesis. Cell Molec Life Sci 2003; 60: 1135-57.
  • 5 van der Flier A, Sonnenberg A. Function and interactions of integrins. Cell Tissue Res 2001; 305: 285-98.
  • 6 Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell 2002; 110: 673-87.
  • 7 Liddington RC, Ginsberg MH. Integrin activation takes shape. J Cell Biol 2002; 158: 833-9.
  • 8 Travis MA, Humphries JD, Humphries MJ. An unraveling tale of how integrins are activated from within. Trends Pharmacol Sci 2003; 24: 192-7.
  • 9 Woodside DG, Liu S, Ginsberg MH. Integrin activation. Thromb Haemost 2001; 86: 316-23.
  • 10 Hughes PE, Pfaff M. Integrin affinity modulation. Trends Cell Biol 1998; 08: 359-64.
  • 11 Bazzoni G, Hemler ME. Are changes in integrin affinity and conformation overemphasized?. Trends Biochem Sci 1998; 23: 30-4.
  • 12 Zhang Z, Vuori K, Wang H. et al. Integrin activation by R-ras. Cell 1996; 85: 61-9.
  • 13 Hughes PE, Renshaw MW, Pfaff M. et al. Suppression of integrin activation: a novel function of a Ras/Raf-initiated MAP kinase pathway. Cell 1997; 88: 521-30.
  • 14 Laudanna C, Campbell JJ, Butcher EC. Role of Rho in chemoattractant-activated leukocyte adhesion through integrins. Science 1996; 271: 981-3.
  • 15 Byzova TV, Goldman CK, Pampori N. et al. A mechanism for modulation of cellular responses to VEGF: activation of the integrins. Molec Cell 2000; 06: 851-60.
  • 16 Bazzoni G, Shih DT, Buck CA. et al. Monoclonal antibody 9EG7 defines a novel beta 1 integrin epitope induced by soluble ligand and manganese, but inhibited by calcium. J Biol Chem 1995; 270: 25570-7.
  • 17 Mould AP, Garratt AN, Puzon-McLaughlin W. et al. Regulation of integrin function: evidence that bivalent-cation-induced conformational changes lead to the unmasking of ligand-binding sites within integrin alpha5 beta1. Biochemical J 1998; 331: 821-8.
  • 18 Takagi J, Petre BM, Walz T. et al. Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling. Cell 2002; 110: 599-11.
  • 19 Burridge K, Chrzanowska-Wodnicka M. Focal adhesions, contractility, and signaling. Ann Rev Cell Dev Biol 1996; 12: 463-518.
  • 20 Cukierman E, Pankov R, Yamada KM. Cell interactions with three-dimensional matrices. Curr Opin Cell Biol 2002; 14: 633-9.
  • 21 Schoenwaelder SM, Burridge K. Bidirectional signaling between the cytoskeleton and integrins. Curr Opin Cell Biol 1999; 11: 274-86.
  • 22 Geiger B, Bershadsky A, Pankov R. et al. Transmembrane crosstalk between the extracellular matrix—cytoskeleton crosstalk. Nat Rev Mol Cell Biol 2001; 02: 793-805.
  • 23 Giancotti FG, Ruoslahti E. Integrin signaling. Science 1999; 285: 1028-32.
  • 24 Wehrle-Haller B, Imhof B. The inner lives of focal adhesions. Trends Cell Biol 2002; 12: 382-9.
  • 25 Ruegg C, Yilmaz A, Bieler G. et al. Evidence for the involvement of endothelial cell integrin alpha-v-beta-3 in the disruption of the tumor vasculature induced by tnf and ifn-gamma. Nat Med 1998; 04: 408-14.
  • 26 Zamir E, Katz M, Posen Y. et al. Dynamics and segregation of cell-matrix adhesions in cultured fibroblasts. Nat Cell Biol 2000; 02: 191-6.
  • 27 Katz BZ, Zamir E, Bershadsky A. et al. Physical state of the extracellular matrix regulates the structure and molecular composition of cell-matrix adhesions. Molec Biol Cell 2000; 11: 1047-60.
  • 28 Luque A, Gomez M, Puzon W. et al. Activated conformations of very late activation integrins detected by a group of antibodies (HUTS) specific for a novel regulatory region (355–425) of the common beta 1 chain. J Biol Chem 1996; 271: 11067-75.
  • 29 Khaspekova SG, Vlasik TN, Byzova TV. et al. Detection of an epitope specific for the dissociated form of glycoprotein IIIa of platelet membrane glycoprotein IIb-IIIa complex and its expression on the surface of adherent platelets. Br J Haematol 1993; 85: 332-40.
  • 30 Byzova TV, Plow EF. Activation of alphaV beta3 on vascular cells controls recognition of prothrombin. J Cell Biol 1998; 143: 2081-92.
  • 31 Mould AP, Akiyama SK, Humphries MJ. Regulation of integrin alpha 5 beta 1-fibronectin interactions by divalent cations. Evidence for distinct classes of binding sites for Mn2+, Mg2+, and Ca2+. J Biol Chem 1995; 270: 26270-7.
  • 32 Dormond O, Foletti A, Paroz C. et al. NSAIDs inhibit alpha V beta 3 integrin-mediated and Cdc42/Rac-dependent endothelial-cell spreading, migration and angiogenesis. Nat Med 2001; 07: 1041-7.
  • 33 Hotchin NA, Hall A. The assembly of integrin adhesion complexes requires both extracellular matrix and intracellular rho/rac GTPases. J Cell Biol 1995; 131: 1857-65.
  • 34 Abbi S, Guan JL. Focal adhesion kinase: protein interactions and cellular functions. Histol Histopathol 2002; 17: 1163-71.
  • 35 Parsons JT, Martin KH, Slack JK. et al. Focal adhesion kinase: a regulator of focal adhesion dynamics and cell movement. Oncogene 2000; 19: 5606-13.
  • 36 Burridge K, Chrzanowska-Wodnicka M, Zhong C. Focal adhesion assembly. Trends Cell Biol 1997; 07: 342-7.
  • 37 Volberg T, Romer L, Zamir E. et al. pp60 (c-src) and related tyrosine kinases: a role in the assembly and reorganization of matrix adhesions. J Cell Sci 2001; 114: 2279-89.
  • 38 Hanke JH, Gardner JP, Dow RL. et al. Discovery of a novel, potent, and Src familyselective tyrosine kinase inhibitor. Study of Lck- and FynT-dependent T cell activation. J Biol Chem 1996; 271: 695-701.
  • 39 Missbach M, Jeschke M, Feyen J. et al. A novel inhibitor of the tyrosine kinase Src suppresses phosphorylation of its major cellular substrates and reduces bone resorption in vitro and in rodent models in vivo. Bone 1999; 24: 437-49.
  • 40 Fahraeus R, Lane DP. The p16(INK4a) tumour suppressor protein inhibits alphav beta3 integrin-mediated cell spreading on vitronectin by blocking PKC-dependent localization of alphavbeta3 to focal contacts. Embo J 1999; 18: 2106-18.
  • 41 Derman MP, Toker A, Hartwig JH. et al. The lipid products of phosphoinositide 3-kinase increase cell motility through protein kinase C. J Biol Chem 1997; 272: 6465-70.
  • 42 Reiske HR, Kao SC, Cary LA. et al. Requirement of phosphatidylinositol 3-kinase in focal adhesion kinase promoted cell migration. J Biol Chem 1999; 274: 12361-6.
  • 43 Paulhe F, Perret B, Chap H. et al. Phosphoinositide 3-kinase C2alpha is activated upon smooth muscle cell migration and regulated by alpha(v)beta(3) integrin engagement. Biochem Biophys Res Commun 2002; 297: 261-6.
  • 44 Hruska KA, Rolnick F, Huskey M. et al. Engagement of the osteoclast integrin alpha v beta 3 by osteopontin stimulates phosphatidylinositol 3-hydroxyl kinase activity. Endocrinology 1995; 136: 2984-92.
  • 45 Seger D, Seger R, Shaltiel S. The CK2 phosphorylation of vitronectin. Promotion of cell adhesion via the alpha(v)beta 3-phosphatidylinositol 3-kinase pathway. J Biol Chem 2001; 276: 16998-7006.
  • 46 Zell T, Hunt 3rd SW, Mobley JL. et al. CD28-mediated up-regulation of beta 1-integrin adhesion involves phosphatidylinositol 3-kinase. J Immunol 1996; 156: 883-6.
  • 47 Kinashi T, Asaoka T, Setoguchi R. et al. Affinity modulation of very late antigen-5 through phosphatidylinositol 3-kinase in mast cells. J Immunol 1999; 162: 2850-7.
  • 48 Byzova TV, Kim W, Midura RJ. et al. Activation of integrin alpha(v)beta(3) regulates cell adhesion and migration to bone sialoprotein. Exp Cell Res 2000; 254: 299-308.
  • 49 Rodriguez-Viciana P, Warne PH, Vanhaesebroeck B. et al. Activation of phosphoinositide 3-kinase by interaction with Ras and by point mutation. Embo J 1996; 15: 2442-51.
  • 50 Rodriguez-Viciana P, Warne PH, Khwaja A. et al. Role of phosphoinositide 3-OH kinase in cell transformation and control of the actin cytoskeleton by Ras. Cell 1997; 89: 457-67.
  • 51 Nicholson KM, Anderson NG. The protein kinase B/Akt signalling pathway in human malignancy. Cell Signal 2002; 14: 381-95.
  • 52 Li R, Mitra N, Gratkowski H. et al. Activation of integrin alphaIIbbeta3 by modulation of transmembrane helix associations. Science 2003; 300: 795-8.
  • 53 Shimizu Y, Hunt 3rd SW. Regulating integrinmediated adhesion: one more function for PI 3-kinase?. Immunol Today 1996; 17: 565-73.
  • 54 Kolanus W, Seed B. Integrins and inside-out signal transduction: converging signals from PKC and PIP3. Curr Opin Cell Biol 1997; 09: 725-31.
  • 55 Zhang J, Zhang J, Shattil SJ. et al. Phosphoinositide 3-kinase gamma and p85/phosphoinositide 3-kinase in platelets. Relative activation by thrombin receptor or beta-phorbol myristate acetate and roles in promoting the ligand-binding function of alphaIIbbeta3 integrin. J Biol Chem 1996; 271: 6265-72.
  • 56 Shimizu Y, Mobley JL, Finkelstein LD. et al. A role for phosphatidylinositol 3-kinase in the regulation of beta 1 integrin activity by the CD2 antigen. J Cell Biol 1995; 131: 1867-80.
  • 57 Turner L, Ward SG, Westwick J. RANTESactivated human T lymphocytes. A role for phosphoinositide 3-kinase. J Immunol 1995; 155: 2437-44.
  • 58 Jones SL, Knaus UG, Bokoch GM. et al. Two signaling mechanisms for activation of alphaM beta2 avidity in polymorphonuclear neutrophils. J Biol Chem 1998; 273: 10556-66.
  • 59 Krauss K, Altevogt P. Integrin leukocyte function-associated antigen-1-mediated cell binding can be activated by clustering of membrane rafts. J Biol Chem 1999; 274: 36921-7.
  • 60 Rodriguez-Viciana P, Warne PH, Dhand R. et al. Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature 1994; 370: 527-32.
  • 61 Nagel W, Zeitlmann L, Schilcher P. et al. Phosphoinositide 3-OH kinase activates the beta2 integrin adhesion pathway and induces membrane recruitment of cytohesin-1. J Biol Chem 1998; 273: 14853-61.
  • 62 Ilic D, Kovacic B, Johkura K. et al. FAK promotes organization of fibronectin matrix and fibrillar adhesions. J Cell Sci 2004; 117: 177-87.
  • 63 Jones PL, Crack J, Rabinovitch M. Regulation of tenascin-C, a vascular smooth muscle cell survival factor that interacts with the alpha v beta 3 integrin to promote epidermal growth factor receptor phosphorylation and growth. J Cell Biol 1997; 139: 279-93.
  • 64 Trusolino L, Serini G, Cecchini G. et al. Growth factor-dependent activation of alphavbeta3 integrin in normal epithelial cells: implications for tumor invasion. J Cell Biol 1998; 142: 1145-56.
  • 65 Ni H, Li A, Simonsen N. et al. Integrin activation by dithiothreitol or Mn2+ induces a ligand-occupied conformation and exposure of a novel NH2-terminal regulatory site on the beta1 integrin chain. J Biol Chem 1998; 273: 7981-7.
  • 66 Garcia AJ, Vega MD, Boettiger D. Modulation of cell proliferation and differentiation through substrate-dependent changes in fibronectin conformation. Mol Biol Cell 1999; 10: 785-98.
  • 67 Cheresh DA. Human endothelial cells synthesize and express an Arg-Gly-Asp-directed adhesion receptor involved in attachment to fibrinogen and von Willebrand factor. Proc Natl Acad Sci U S A 1987; 84: 6471-5.
  • 68 Frelinger AD, Cohen I, Plow EF. et al. Selective inhibition of integrin function by antibodies specific for ligand-occupied receptor conformers. J Biol Chem 1990; 265: 6346-52.