Abstract
With the rapidly increasing prevalence of type 2 diabetes mellitus the risk for cardiovascular
events is increasing. Almost 2 of 3 patients who present with symptomatic CHD have
abnormal glucose homeostasis. Patients with diabetes mellitus and cardiovascular disease
have an unfavourable prognosis. The most important result of diabetes metabolism is
the switch from carbohydrates and fatty acids as a source of energy to an excessive
use of fatty acids. The adverse influence of diabetes mellitus extends to all components
of the cardiovascular system, including microvasculature, the epicardial coronary
arteries, the large conduit arteries and the heart, as well as the kidneys. Focus
of this review is the myocardial metabolism in heart failure and diabetes mellitus.
Key words
diabetic cardiomyopathy - lipotoxicity - cardiac metabolism
References
- 1
An D, Rodrigues B.
Role of changes in cardiac metabolism in development of diabetic cardiomyopathy.
Am J Physiol Heart Circ Physiol.
2006;
291
H1489-H1506
- 2
Atkinson LL, Fischer MA, Lopaschuk GD.
Leptin activates cardiac fatty acid oxidation independent of changes in the AMP-activated
protein kinase-acetyl-CoA carboxylase-malonyl-CoA axis.
J Biol Chem.
2002;
277
29424-29430
- 3
Bell DS.
Heart failure: the frequent, forgotten, and often fatal complication of diabetes.
Diabetes Care.
2003;
26
2433-2441
- 4
Capes SE, Hunt D, Malmberg K, Gerstein HC.
Stress hyperglycaemia and increased risk of death after myocardial infarction in patients
with and without diabetes: a systematic overview.
Lancet.
2000;
355
773-778
- 5
Carroll R, Carley AN, Dyck JR, Severson DL.
Metabolic effects of insulin on cardiomyocytes from control and diabetic db/db mouse
hearts.
Am J Physiol Endocrinol Metab.
2005;
288
E900-E906
- 6
Chiu HC, Kovacs A, Blanton RM, Han X, Courtois M, Weinheimer CJ, Yamada KA, Brunet S,
Xu H, Nerbonne JM, Welch MJ, Fettig NM, Sharp TL, Sambandam N, Olson KM, Ory DS, Schaffer JE.
Transgenic expression of fatty acid transport protein 1 in the heart causes lipotoxic
cardiomyopathy.
Circ Res.
2005;
96
225-233
- 7
Chiu HC, Kovacs A, Ford DA, Hsu FF, Garcia R, Herrero P, Saffitz JE, Schaffer JE.
A novel mouse model of lipotoxic cardiomyopathy.
J Clin Invest.
2001;
107
813-822
- 8
Cohen P.
The Croonian Lecture 1998. Identification of a protein kinase cascade of major importance
in insulin signal transduction.
Philos Trans R Soc Lond B Biol Sci.
1999;
354
485-495
- 9
Conway MA, Allis J, Ouwerkerk R, Niioka T, Rajagopalan B, Radda GK.
Detection of low phosphocreatine to ATP ratio in failing hypertrophied human myocardium
by 31P magnetic resonance spectroscopy.
Lancet.
1991;
338
973-976
- 10
Coort SL, Hasselbaink DM, Koonen DP, Willems J, Coumans WA, Chabowski A, Vusse GJ
van der, Bonen A, Glatz JF, Luiken JJ.
Enhanced sarcolemmal FAT/CD36 content and triacylglycerol storage in cardiac myocytes
from obese zucker rats.
Diabetes.
2004;
53
1655-1663
- 11
Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA.
Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B.
Nature.
1995;
378
785-789
- 12
Davila-Roman VG, Vedala G, Herrero P, de las Fuentes L, Rogers JG, Kelly DP, Gropler RJ.
Altered myocardial fatty acid and glucose metabolism in idiopathic dilated cardiomyopathy.
J Am Coll Cardiol.
2002;
40
271-277
- 13
Finck BN, Han X, Courtois M, Aimond F, Nerbonne JM, Kovacs A, Gross RW, Kelly DP.
A critical role for PPARalpha-mediated lipotoxicity in the pathogenesis of diabetic
cardiomyopathy: modulation by dietary fat content.
Proc Natl Acad Sci USA.
2003;
100
1226-1231
- 14
Finck BN, Lehman JJ, Leone TC, Welch MJ, Bennett MJ, Kovacs A, Han X, Gross RW, Kozak R,
Lopaschuk GD, Kelly DP.
The cardiac phenotype induced by PPARalpha overexpression mimics that caused by diabetes
mellitus.
J Clin Invest.
2002;
109
121-130
- 15
Fulton D, Gratton JP, MacCabe TJ, Fontana J, Fujio Y, Walsh K, Franke TF, Papapetropoulos A,
Sessa WC.
Regulation of endothelium-derived nitric oxide production by the protein kinase Akt.
Nature.
1999;
399
597-601
- 16
Giles TD, Sander GE.
Diabetes mellitus and heart failure: basic mechanisms, clinical features, and therapeutic
considerations.
Cardiol Clin.
2004;
22
553-568
- 17
Golfman LS, Wilson CR, Sharma S, Burgmaier M, Young ME, Guthrie PH, Arsdall M Van,
Adrogue JV, Brown KK, Taegtmeyer H.
Activation of PPARgamma enhances myocardial glucose oxidation and improves contractile
function in isolated working hearts of ZDF rats.
Am J Physiol Endocrinol Metab.
2005;
289
E328-E336
- 18
Guimbal C, Kilimann MW.
A Na(+)-dependent creatine transporter in rabbit brain, muscle, heart, and kidney.
cDNA cloning and functional expression.
J Biol Chem.
1993;
268
8418-8421
- 19
Hardy CJ, Weiss RG, Bottomley PA, Gerstenblith G.
Altered myocardial high-energy phosphate metabolites in patients with dilated cardiomyopathy.
Am Heart J.
1991;
122
795-801
- 20
Held C, Gerstein HC, Yusuf S, Zhao F, Hilbrich L, Anderson C, Sleight P, Teo K.
Glucose levels predict hospitalization for congestive heart failure in patients at
high cardiovascular risk.
Circulation.
2007;
115
1371-1375
- 21
Horio T, Suzuki M, Suzuki K, Takamisawa I, Hiuge A, Kamide K, Takiuchi S, Iwashima Y,
Kihara S, Funahashi T, Yoshimasa Y, Kawano Y.
Pioglitazone improves left ventricular diastolic function in patients with essential
hypertension.
Am J Hypertens.
2005;
18
949-957
- 22
Houstis N, Rosen ED, Lander ES.
Reactive oxygen species have a causal role in multiple forms of insulin resistance.
Nature.
2006;
440
944-948
- 23
How OJ, Aasum E, Severson DL, Chan WY, Essop MF, Larsen TS.
Increased myocardial oxygen consumption reduces cardiac efficiency in diabetic mice.
Diabetes.
2006;
55
466-473
- 24
Hu P, Zhang D, Swenson L, Chakrabarti G, Abel ED, Litwin SE.
Minimally invasive aortic banding in mice: effects of altered cardiomyocyte insulin
signaling during pressure overload.
Am J Physiol Heart Circ Physiol.
2003;
285
H1261-H1269
- 25
Ibrahimi A, Bonen A, Blinn WD, Hajri T, Li X, Zhong K, Cameron R, Abumrad NA.
Muscle-specific overexpression of FAT/CD36 enhances fatty acid oxidation by contracting
muscle, reduces plasma triglycerides and fatty acids, and increases plasma glucose
and insulin.
J Biol Chem.
1999;
274
26761-26766
- 26
Ingwall JS.
Is creatine kinase a target for AMP-activated protein kinase in the heart?.
J Mol Cell Cardiol.
2002;
34
1111-1120
- 27
Ingwall JS, Weiss RG.
Is the failing heart energy starved? On using chemical energy to support cardiac function.
Circ Res.
2004;
95
135-145
- 28
Iozzo P, Chareonthaitawee P, Dutka D, Betteridge DJ, Ferrannini E, Camici PG.
Independent association of type 2 diabetes and coronary artery disease with myocardial
insulin resistance.
Diabetes.
2002;
51
3020-3024
- 29
Iribarren C, Karter AJ, Go AS, Ferrara A, Liu JY, Sidney S, Selby JV.
Glycemic control and heart failure among adult patients with diabetes.
Circulation.
2001;
103
2668-2673
- 30
Kalousova M, Skrha J, Zima T.
Advanced glycation end-products and advanced oxidation protein products in patients
with diabetes mellitus.
Physiol Res.
2002;
51
597-604
- 31
Kannel WB.
Incidence and epidemiology of heart failure.
Heart Fail Rev.
2000;
5
167-173
- 32
Kannel WB, MacGee DL.
Diabetes and cardiovascular disease. The Framingham study.
Jama.
1979;
241
2035-2038
- 33
King KL, Okere IC, Sharma N, Dyck JR, Reszko AE, MacElfresh TA, Kerner J, Chandler MP,
Lopaschuk GD, Stanley WC.
Regulation of cardiac malonyl-CoA content and fatty acid oxidation during increased
cardiac power.
Am J Physiol Heart Circ Physiol.
2005;
289
H1033-H1037
- 34
Koonen DP, Glatz JF, Bonen A, Luiken JJ.
Long-chain fatty acid uptake and FAT/CD36 translocation in heart and skeletal muscle.
Biochim Biophys Acta.
2005;
1736
163-180
- 35
Lamb HJ, Beyerbacht HP, Laarse A van der, Stoel BC, Doornbos J, Wall EE van der, Roos A
de.
Diastolic dysfunction in hypertensive heart disease is associated with altered myocardial
metabolism.
Circulation.
1999;
99
2261-2267
- 36
Lautamaki R, Airaksinen KE, Seppanen M, Toikka J, Harkonen R, Luotolahti M, Borra R,
Sundell J, Knuuti J, Nuutila P.
Insulin improves myocardial blood flow in patients with type 2 diabetes and coronary
artery disease.
Diabetes.
2006;
55
511-516
- 37
Leone TC, Weinheimer CJ, Kelly DP.
A critical role for the peroxisome proliferator-activated receptor alpha (PPARalpha)
in the cellular fasting response: the PPARalpha-null mouse as a model of fatty acid
oxidation disorders.
Proc Natl Acad Sci USA.
1999;
96
7473-7478
- 38
Luiken JJ, Coort SL, Koonen DP, Bonen A, Glatz JF.
Signalling components involved in contraction-inducible substrate uptake into cardiac
myocytes.
Proc Nutr Soc.
2004;
63
251-258
- 39
Luiken JJ, Coort SL, Koonen DP, Horst DJ van der, Bonen A, Zorzano A, Glatz JF.
Regulation of cardiac long-chain fatty acid and glucose uptake by translocation of
substrate transporters.
Pflugers Arch.
2004;
448
1-15
- 40
Monti LD, Landoni C, Setola E, Galluccio E, Lucotti P, Sandoli EP, Origgi A, Lucignani G,
Piatti P, Fazio F.
Myocardial insulin resistance associated with chronic hypertriglyceridemia and increased
FFA levels in Type 2 diabetic patients.
Am J Physiol Heart Circ Physiol.
2004;
287
H1225-H1231
- 41
Murray AJ, Anderson RE, Watson GC, Radda GK, Clarke K.
Uncoupling proteins in human heart.
Lancet.
2004;
364
1786-1788
- 42
Neubauer S.
The failing heart – an engine out of fuel.
N Engl J Med.
2007;
356
1140-1151
- 43
Neubauer S, Horn M, Cramer M, Harre K, Newell JB, Peters W, Pabst T, Ertl G, Hahn D,
Ingwall JS, Kochsiek K.
Myocardial phosphocreatine-to-ATP ratio is a predictor of mortality in patients with
dilated cardiomyopathy.
Circulation.
1997;
96
2190-2196
- 44
Neubauer S, Horn M, Pabst T, Godde M, Lubke D, Jilling B, Hahn D, Ertl G.
Contributions of 31P-magnetic resonance spectroscopy to the understanding of dilated
heart muscle disease.
Eur Heart J.
1995;
16
((Suppl O))
115-118
- 45
Neubauer S, Krahe T, Schindler R, Horn M, Hillenbrand H, Entzeroth C, Mader H, Kromer EP,
Riegger GA, Lackner K. et al .
31P magnetic resonance spectroscopy in dilated cardiomyopathy and coronary artery
disease. Altered cardiac high-energy phosphate metabolism in heart failure.
Circulation.
1992;
86
1810-1818
- 46
Norton GR, Candy G, Woodiwiss AJ.
Aminoguanidine prevents the decreased myocardial compliance produced by streptozotocin-induced
diabetes mellitus in rats.
Circulation.
1996;
93
1905-1912
- 47
O’Keefe JH, Bell DS.
Postprandial hyperglycemia/hyperlipidemia (postprandial dysmetabolism) is a cardiovascular
risk factor.
Am J Cardiol.
2007;
100
899-904
- 48
Opie LH.
Effect of fatty acids on contractility and rhythm of the heart.
Nature.
1970;
227
1055-1056
- 49
Osorio JC, Stanley WC, Linke A, Castellari M, Diep QN, Panchal AR, Hintze TH, Lopaschuk GD,
Recchia FA.
Impaired myocardial fatty acid oxidation and reduced protein expression of retinoid
X receptor-alpha in pacing-induced heart failure.
Circulation.
2002;
106
606-612
- 50
Paz K, Hemi R, LeRoith D, Karasik A, Elhanany E, Kanety H, Zick Y.
A molecular basis for insulin resistance. Elevated serine/threonine phosphorylation
of IRS-1 and IRS-2 inhibits their binding to the juxtamembrane region of the insulin
receptor and impairs their ability to undergo insulin-induced tyrosine phosphorylation.
J Biol Chem.
1997;
272
29911-29918
- 51
Peterson LR, Herrero P, Schechtman KB, Racette SB, Waggoner AD, Kisrieva-Ware Z, Dence C,
Klein S, Marsala J, Meyer T, Gropler RJ.
Effect of obesity and insulin resistance on myocardial substrate metabolism and efficiency
in young women.
Circulation.
2004;
109
2191-2196
- 52
Razeghi P, Young ME, Alcorn JL, Moravec CS, Frazier OH, Taegtmeyer H.
Metabolic gene expression in fetal and failing human heart.
Circulation.
2001;
104
2923-2931
- 53
Rosen P, Du X, Tschope D.
Role of oxygen derived radicals for vascular dysfunction in the diabetic heart: prevention
by alpha-tocopherol?.
Mol Cell Biochem.
1998;
188
103-111
- 54
Rui L, Aguirre V, Kim JK, Shulman GI, Lee A, Corbould A, Dunaif A, White MF.
Insulin/IGF-1 and TNF-alpha stimulate phosphorylation of IRS-1 at inhibitory Ser307
via distinct pathways.
J Clin Invest.
2001;
107
181-189
- 55
Schupp M, Kintscher U, Fielitz J, Thomas J, Pregla R, Hetzer R, Unger T, Regitz-Zagrosek V.
Cardiac PPARalpha expression in patients with dilated cardiomyopathy.
Eur J Heart Fail.
2006;
8
290-294
- 56
Shah A, Shannon RP.
Insulin resistance in dilated cardiomyopathy.
Rev Cardiovasc Med.
2003;
4
((Suppl 6))
S50-S57
- 57
Sharma S, Adrogue JV, Golfman L, Uray I, Lemm J, Youker K, Noon GP, Frazier OH, Taegtmeyer H.
Intramyocardial lipid accumulation in the failing human heart resembles the lipotoxic
rat heart.
Faseb J.
2004;
18
1692-1700
- 58
Simon HU, Haj-Yehia A, Levi-Schaffer F.
Role of reactive oxygen species (ROS) in apoptosis induction.
Apoptosis.
2000;
5
415-418
- 59
Sliwa K, Damasceno A, Mayosi BM.
Epidemiology and etiology of cardiomyopathy in Africa.
Circulation.
2005;
112
3577-3583
- 60
Stanley WC, Lopaschuk GD, MacCormack JG.
Regulation of energy substrate metabolism in the diabetic heart.
Cardiovasc Res.
1997;
34
25-33
- 61
Stratton IM, Adler AI, Neil HA, Matthews DR, Manley SE, Cull CA, Hadden D, Turner RC,
Holman RR.
Association of glycaemia with macrovascular and microvascular complications of type
2 diabetes (UKPDS 35): prospective observational study.
Bmj.
2000;
321
405-412
- 62
Susic D, Varagic J, Ahn J, Frohlich ED.
Crosslink breakers: a new approach to cardiovascular therapy.
Curr Opin Cardiol.
2004;
19
336-340
- 63
Taegtmeyer H.
Switching metabolic genes to build a better heart.
Circulation.
2002;
106
2043-2045
- 64
Taegtmeyer H, MacNulty P, Young ME.
Adaptation and maladaptation of the heart in diabetes: Part I: general concepts.
Circulation.
2002;
105
1727-1733
- 65
Taegtmeyer H, Passmore JM.
Defective energy metabolism of the heart in diabetes.
Lancet.
1985;
1
139-141
- 66
Taniguchi CM, Emanuelli B, Kahn CR.
Critical nodes in signalling pathways: insights into insulin action.
Nat Rev Mol Cell Biol.
2006;
7
85-96
- 67
Teusink B, Voshol PJ, Dahlmans VE, Rensen PC, Pijl H, Romijn JA, Havekes LM.
Contribution of fatty acids released from lipolysis of plasma triglycerides to total
plasma fatty acid flux and tissue-specific fatty acid uptake.
Diabetes.
2003;
52
614-620
- 68
Ungar I, Gilbert M, Siegel A, Blain JM, Bing RJ.
Studies on myocardial metabolism. IV. Myocardial metabolism in diabetes.
Am J Med.
1955;
18
385-396
- 69
Heerebeek L van, Hamdani N, Handoko ML, Falcao-Pires I, Musters RJ, Kupreishvili K,
Ijsselmuiden AJ, Schalkwijk CG, Bronzwaer JG, Diamant M, Borbely A, Velden J van der,
Stienen GJ, Laarman GJ, Niessen HW, Paulus WJ.
Diastolic stiffness of the failing diabetic heart: importance of fibrosis, advanced
glycation end products, and myocyte resting tension.
Circulation.
2008;
117
43-51
- 70
Vincent MA, Montagnani M, Quon MJ.
Molecular and physiologic actions of insulin related to production of nitric oxide
in vascular endothelium.
Curr Diab Rep.
2003;
3
279-288
- 71
Wyss M, Wallimann T.
Creatine metabolism and the consequences of creatine depletion in muscle.
Mol Cell Biochem.
1994;
133–134
51-66
- 72
Yagyu H, Chen G, Yokoyama M, Hirata K, Augustus A, Kako Y, Seo T, Hu Y, Lutz EP, Merkel M,
Bensadoun A, Homma S, Goldberg IJ.
Lipoprotein lipase (LpL) on the surface of cardiomyocytes increases lipid uptake and
produces a cardiomyopathy.
J Clin Invest.
2003;
111
419-426
- 73
Young ME, MacNulty P, Taegtmeyer H.
Adaptation and maladaptation of the heart in diabetes: Part II: potential mechanisms.
Circulation.
2002;
105
1861-1870
- 74
Yuan M, Konstantopoulos N, Lee J, Hansen L, Li ZW, Karin M, Shoelson SE.
Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted
disruption of Ikkbeta.
Science.
2001;
293
1673-1677
- 75
Zhou YT, Grayburn P, Karim A, Shimabukuro M, Higa M, Baetens D, Orci L, Unger RH.
Lipotoxic heart disease in obese rats: implications for human obesity.
Proc Natl Acad Sci USA.
2000;
97
1784-1789
Correspondence
Univ. Prof. Dr. Dr. D. Tschoepe
Heart and Diabetes Center NRW
Ruhr-University Bochum
Georgstraße 11
32545 Bad Oeynhausen
Germany
Phone: +49/5731/97 22 92
Fax: +49/5731/97 19 67
Email: dtschoepe@hdz-nrw.de