Zusammenfassung
Künstliche Beatmung kann das Lungengewebe in Abhängigkeit von Beatmungseinstellungen
(Druckamplitude, endexspiratorischer Druck, Frequenz) und Beatmungsdauer schädigen.
Insbesondere in den inhomogen geschädigten Lungen von ARDS–Patienten führt alveoläre
Überdehnung zum Volutrauma, zyklisches Öffnen und Schließen der Alveolen zum Atelektotrauma.
Von besonderer Bedeutung ist wohl, dass diese Vorgänge auch zum Biotrauma, das heißt
zu einer beatmungsinduzierten Überaktivierung der pulmonalen Entzündungsantwort führen
können. Diese Probleme sind bei der derzeit empfohlenen Beatmung mit 6ml/kg idealisiertes
Körpergewicht vermindert, aber nicht eliminiert. Eine Beatmungsoptimierung mit dem
Ziel der Reduktion beatmungsassoziierter Lungenschäden kann in Zukunft hoffentlich
erzielt werden durch die Überwachung atemmechanischer Messgrößen, wie Stress–Index
und Slice–Methode, und durch die bettseitige Anwendung neuer echtzeitfähiger bildgebender
Verfahren wie der elektrischen Impedanztomographie.
Summary
Mechanical ventilation may lead to lung injury depending on the ventilatory settings
(e.g. pressure amplitudes, endexpiratory pressures, frequency) and the length of mechanical
ventilation. Particularly in the inhomogeneously injured lungs of ARDS patients, alveolar
overextension results in volutrauma, cyclic opening and closure of alveolar units
in atelectrauma. Particularly important appears to be the fact that these processes
may also cause biotrauma, i.e. the ventilator–induced hyperactivation of inflammatory
responses in the lung. These side effects are reduced, but not eliminated with the
currently recommended ventilation strategy with a tidal volume of 6ml/kg idealized
body weight. It is our hope that in the future optimization of ventilator settings
will be facilated by bedside monitoring of novel indices of respiratory mechanics
such as the stress index or the Slice technique, and by innovative real–time imaging
technologies such as electrical impedance tomography.
Schlüsselwörter:
Lungenprotektive Beatmung - beatmungsbedingte Lungenschädigung - Biotrauma - Monitoring
Keywords:
Lung protective ventilation - ventilator–induced lung injury - biotrauma - monitoring
Kernaussagen
-
Beatmungsinduzierte Lungenschädigung ist bei der derzeit empfohlenen Beatmung mit
6ml/kg idealisiertes Körpergewicht vermindert, aber nicht eliminiert.
-
Alveoläre Überdehnung kann zum Volutrauma, zyklisches Öffnen und Schließen der Alveolen
zum Alektotrauma führen. Ein Biotrauma kann infolge beatmungsinduzierter Überaktivierung
der pulmonären Entzündungsantwort entstehen.
-
Überwachung von beatmeten Patienten ist z.Zt. nicht optimal.
-
Beatmungseinstellungen müssen individuell anhand von Messgrößen unterschiedlicher
Monitoringverfahren definiert werden.
-
Zu den Standardverfahren zählen die Ermittlung von respiratorischen und atemmechanischen
Messgrößen sowie klassische bildgebende Verfahren.
-
Neue Methoden (z.B. EIT, Stress–Index– und Slice–Methode) könnten in der Zukunft bettseitig
und kontinuierlich Informationen liefern, mit denen die Beatmungseinstellungen optimiert
werden können.
Literatur
- 1
The Acute Respiratory Distress Syndrome Network. .
Ventilation with lower tidal volumes as compared with traditional tidal volumes for
acute lung injury and the acute respiratory distress syndrome.
N Engl J Med.
2000;
342
1301-1308
- 2
Gajic O, Dara SI, Mendez JL. et al. .
Ventilator–associated lung injury in patients without acute lung injury at the onset
of mechanical ventilation.
Crit Care Med.
2004;
32
1817-1824
- 3
Hager DN, Krishnan JA, Hayden DL, Brower RG..
Tidal volume reduction in patients with acute lung injury when plateau pressures are
not high.
Am J Respir Crit Care Med.
2005;
172
1241-1245
- 4 Checkley W, Brower R, Korpak A, Thompson BT.. Effects of a Clinical Trial on Mechanical
Ventilation Practices in Patients with Acute Lung Injury. Am J Respir Crit Care Med
(in press)
- 5
Gattinoni L, Carlesso E, Cadringher P. et al. .
Physical and biological triggers of ventilator–induced lung injury and its prevention.
Eur Respir J Suppl.
2003;
47
- 6
Victorino JA, Borges JB, Okamoto VN. et al. .
Imbalances in regional lung ventilation: a validation study on electrical impedance
tomography.
Am J Respir Crit Care Med.
2004;
169
791-800
- 7
Uhlig S..
Ventilation–induced lung injury and mechanotransduction: Stretching it too far?.
Am J Physiol Lung Cell Mol Physiol.
2002;
282
- 8
Hubmayr RD..
Perspective on lung injury and recruitment. A skeptical look at the opening and collapse
story.
Am J Respir Crit Care Med.
2002;
165
1647-1653
- 9
Dreyfuss D, Saumon G..
Ventilator–induced lung injury. Lessons from experimental studies.
Am J Respir Crit Care Med.
1998;
157
294-323
- 10
Boussarsar M, Thierry G, Jaber S. et al. .
Relationship between ventilatory settings and barotrauma in the acute respiratory
distress syndrome.
Intensive Care Med.
2002;
28
406-413
- 11
Brower RG, Lanken PN, MacIntyre N. et al. .
Higher versus lower positive end–expiratory pressures in patients with the acute respiratory
distress syndrome.
N Engl J Med.
2004;
351
327-336
- 12
Conrad SA, Zhang S, Arnold TC. et al. .
Protective effects of low respiratory frequency in experimental ventilator–associated
lung injury.
Crit Care Med.
2005;
33
835-840
- 13
Gajic O, Lee J, Doerr CH. et al. .
Ventilator–induced cell wounding and repair in the intact lung.
Am J Respir Crit Care Med.
2003;
167
1057-1063
- 14
Uhlig S, Uhlig U..
Pharmacological interventions in ventilator–induced lung injury.
Trends Pharmacol Sci.
2004;
25
592-600
- 15
Uhlig S, Uhlig U..
Molecular mechanisms of pro–inflammatory responses in overventilated lungs.
Recent Res Devel Resp Critical Care Med.
2001;
1
49-58
- 16
Stamme C, Brasch F, von Bethmann A, Uhlig S..
Effect of surfactant on ventilation–induced mediator release in isolated perfused
mouse lungs.
Pulm Pharmacol Therap.
2002;
15
455-461
- 17 Uhlig U, Drömann D, Goldmann T. et al. .Pulmonary responses to overventilation
in late multiple organ failure. Anesthesiology (in press)
- 18 Meier T, Lange A, Papenberg H. et al. .Pulmonary cytokine responses during mechanical
ventilation of non–injured lungs with and without end–expiratory pressure. Anesth
Analg (in press)
- 19
Stüber F, Wrigge H, Schroeder S. et al. .
Kinetic and reversibility of mechanical ventilation associated pulmonary and systemic
inflammatory response in patients with acute lung injury.
Inten Care Med.
2002;
28
834-841
- 20
Ranieri VM, Suter PM, Tortorella C. et al. .
Effect of mechanical ventilation on inflammatory mediators in patients with acute
respiratory distress syndrome.
A randomized controlled trial. JAMA.
1999;
282
54-61
- 21
Zhang H, Downey GP, Suter PM. et al. .
Conventional mechanical ventilation is associated with bronchoalveolar lavage–induced
activation of polymorphonuclear leukocytes: a possible mechanism to explain the systemic
consequences of ventilator–induced lung injury in patients with ARDS.
Anesthesiology.
2002;
97
1426-1433
- 22
Dolinay T, Kaminski N, Felgendreher M. et al. .
Gene expression profiling of target genes in ventilator–induced lung injury.
Physiol Genomics.
2006;
26
68-75
- 23
Hamanaka K, Jian MY, Weber DS. et al. .
TRPV4 initiates the acute calcium–dependent permeability increase during ventilator–induced
lung injury in isolated mouse lungs.
Am J Physiol Lung Cell Mol Physiol.
2007;
293
- 24
Bhattacharya S, Sen N, Yiming MT. et al. .
High tidal volume ventilation induces proinflammatory signaling in rat lung endothelium.
Am J Respir Cell Mol Biol.
2003;
28
218-224
- 25
Held HD, Boettcher S, Hamann L, Uhlig S..
Ventilation–induced chemokine and cytokine release is associated with activation of
NFkB and is blocked by steroids.
Am J Respir Crit Care Med.
2001;
163
711-716
- 26
Li LF, Yu L, Quinn DA..
Ventilation–induced neutrophil infiltration depends on c–Jun N–terminal kinase.
Am J Respir Crit Care Med.
2003;
169
518-524
- 27
Belperio JA, Keane MP, Burdick MD. et al. .
Critical role for CXCR2 and CXCR2 ligands during the pathogenesis of ventilator–induced
lung injury.
J Clin Invest.
2002;
110
1703-1716
- 28
Wilson MR, Goddard ME, O'Dea KP. et al. .
Differential roles of p55 and p75 tumor necrosis factor receptors on stretch–induced
pulmonary edema in mice.
Am J Physiol Lung Cell Mol.
2007;
293
- 29
Kim JH, Suk MH, Yoon DW. et al. .
Inhibition of matrix metalloproteinase–9 prevents neutrophilic inflammation in ventilator–induced
lung injury.
Am J Physiol Lung Cell Mol Physiol.
2006;
291
- 30
Chapman KE, Sinclair SE, Zhuang D. et al. .
Cyclic mechanical strain increases reactive oxygen species production in pulmonary
epithelial cells.
Am J Physiol Lung Cell Mol Physiol.
2005;
289
- 31
Imai Y, Parodo J, Kajikawa O. et al. .
Injurious mechanical ventilation and end–organ epithelial cell apoptosis and organ
dysfunction in an experimental model of acute respiratory distress syndrome.
JAMA.
2003;
289
2104-2112
- 32
Herrera MT, Toledo C, Valladares F. et al. .
Positive end–expiratory pressure modulates local and systemic inflammatory responses
in a sepsis–induced lung injury model.
Intensive Care Med.
2003;
29
1345-1353
- 33
Ranieri VM, Giunta F, Suter PM, Slutsky AS..
Mechanical ventilation as a mediator of multisystem organ failure in acute respiratory
distress syndrome (letter).
JAMA.
2000;
284
43-44
- 34
Harris RS..
Pressure–volume curves of the respiratory system.
Respir Care.
2005;
50
78-98
- 35
Blanch L, López–Aguilar J, Villagrá A..
Bedside evaluation of pressure–volume curves in patients with acute respiratory distress
syndrome.
Curr Opin Crit Care.
2007;
13
332-337
- 36
Hickling KG..
Reinterpreting the pressure–volume curve in patients with acute respiratory distress
syndrome.
Curr Opin Crit Care.
2002;
8
32-38
- 37
DiRocco JD, Carney DE, Nieman GF..
Correlation between alveolar recruitment/derecruitment and inflection points on the
pressure–volume curve.
Intensive Care Med.
2007;
33
1204-1211
- 38
Grasso S, Terragni P, Mascia L. et al. .
Airway pressure–time curve profile (stress index) detects tidal recruitment/hyperinflation
in experimental acute lung injury.
Crit Care Med.
2004;
32
1018-1027
- 39
Terragni PP, Rosboch GL, Lisi A. et al. .
How respiratory system mechanics may help in minimising ventilator–induced lung injury
in ARDS patients.
Eur Respir J.
2003;
42
- 40
Grasso S, Stripoli T, De M Michele. et al. .
ARDSnet ventilatory protocol and alveolar hyperinflation: role of positive end–expiratory
pressure.
Am J Respir Crit Care Med.
2007;
176
761-767
- 41
Mols G, Brandes I, Kessler V. et al. .
Volume–dependent compliance in ARDS: proposal of a new diagnostic concept.
Intensive Care Med.
1999;
25
1084-1091
- 42
Hermle G, Mols G, Zügel A. et al. .
Intratidal compliance–volume curve as an alternative basis to adjust positive end–expiratory
pressure: a study in isolated perfused rabbit lungs.
Crit Care Med.
2002;
30
1589-1597
- 43
Kirchner EA, Mols G, Hermle G. et al. .
Reduced activation of immunomodulatory transcription factors during positive end–expiratory
pressure adjustment based on volume–dependent compliance in isolated perfused rabbit
lungs.
Br J Anaesth.
2005;
94
530-535
- 44
Tusman G, Suarez–Sipmann F, Böhm SH. et al. .
Monitoring dead space during recruitment and PEEP titration in an experimental model.
Intensive Care Med.
2006;
32
1863-1671
- 45
Maisch S, Reissmann H, Fuellekrug B. et al. .
Compliance and dead space fraction indicate an optimal level of positive end–expiratory
pressure after recruitment in anesthetized patients.
Anesth Analg.
2008;
106
175-181
- 46
Nuckton TJ, Alonso JA, Kallet RH. et al. .
Pulmonary deadspace fraction as a risk factor for death in the acute respiratory distress
syndrome.
N Eng J Med.
2002;
346
1281-1286
- 47
Wrigge H, Sydow M, Zinserling J. et al. .
Determination of functional residual capacity (FRC) by multibreath nitrogen washout
in a lung model and in mechanically ventilated patients. Accuracy depends on continuous
dynamic compensation for changes of gas sampling delay time.
Intensive Care Med.
1998;
24
487-493
- 48
Neumann P, Zinserling J, Haase C. et al. .
Evaluation of respiratory inductive plethysmography in controlled ventilation: measurement
of tidal volume and PEEP–induced changes of end–expiratory lung volume.
Chest.
1998;
113
443-451
- 49
van Genderingen HR, van Vught AJ, Jansen JR..
Estimation of regional lung volume changes by electrical impedance pressures tomography
during a pressure–volume maneuver.
Intensive Care Med.
2003;
29
233-240
- 50
Wolf GK, Arnold JH..
Noninvasive assessment of lung volume: respiratory inductance plethysmography and
electrical impedance tomography.
Crit Care Med.
2005;
33
- 51
Gattinoni L, Caironi P, Cressoni M. et al. .
Lung recruitment in patients with the acute respiratory distress syndrome.
N Engl J Med.
2006;
354
1775-1786
- 52
Caironi P, Langer T, Gattinoni L..
Acute lung injury/acute respiratory distress syndrome pathophysiology: what we have
learned from computed tomography scanning.
Curr Opin Crit Care.
2008;
14
64-69
- 53
Vieira SR, Puybasset L, Richecoeur J. et al. .
A lung computed tomographic assessment of positive end–expiratory pressure–induced
lung overdistension.
Am J Respir Crit Care Med.
1998;
158
1571-1577
- 54
Terragni PP, Rosboch G, Tealdi A. et al. .
Tidal hyperinflation during low tidal volume ventilation in acute respiratory distress
syndrome.
Am J Respir Crit Care Med.
2007;
175
160-6
- 55
Frerichs I, Hahn G, Hellige G..
Thoracic electrical impedance tomographic measurements during volume controlled ventilation–effects
of tidal volume and positive end–expiratory pressure.
IEEE Trans Med Imaging.
1999;
18
764-773
- 56
Frerichs I, Dargaville PA, van Genderingen H. et al. .
Lung volume recruitment after surfactant administration modifies spatial distribution
of ventilation.
Am J Respir Crit Care Med.
2006;
174
772-779
- 57
Lindgren S, Odenstedt H, Erlandsson K. et al. .
Bronchoscopic suctioning may cause lung collapse: a lung model and clinical evaluation.
Acta Anaesthesiol Scand.
2008;
52
209-218
- 58
Frerichs I, Dargaville PA, Dudykevych T, Rimensberger PC..
Electrical impedance tomography: a method for monitoring regional lung aeration and
tidal volume distribution?.
Intensive Care Med.
2003;
29
2312-2316
- 59
Caironi P, Gattinoni L..
How to monitor lung recruitment in patients with acute lung injury.
Curr Opin Crit Care.
2007;
13
338-343
- 60
Gattinoni L, Vagginelli F, Carlesso E. et al. .
Prone–Supine Study Group. Decrease in PaCO2 with prone position is predictive of improved
outcome in acute respiratory distress syndrome.
Crit Care Med.
2003;
31
2727-33
- 61
Borges JB, Okamoto VN, Matos GFJ. et al. .
Reversibility of lung collapse and hypoxemia in early acute respiratory distress syndrome.
Am J Respir Crit Care Med.
2006;
174
268-278
- 62
Dembinski R, Max M, Bensberg R. et al. .
High–frequency oscillatory ventilation in experimental lung injury: effects on gas
exchange.
Intensive Care Med.
2002;
28
768-74
- 63
Feihl F, Eckert P, Brimioulle S. et al. .
Permissive hypercapnia impairs pulmonary gas exchange in the acute respiratory distress
syndrome.
Am J Respir Crit Care Med.
2000;
162
209-15
Prof. Dr. rer. nat. Stefan Uhlig
Prof. Dr. med. Inéz Frerichs
Email: suhlig@ukaachen.de
Email: frerichs@anaesthesie.uni-kiel.de