References and Notes
See, inter alia:
1a
The
Art of Drug Synthesis
Johnson DS.
Li JJ.
Wiley-Interscience;
Hoboken:
2007.
1b
Palladium
in Heterocyclic Chemistry: A Guide for the Synthetic Chemist
2nd
ed.:
Li JJ.
Gribble GW.
Elsevier;
Amsterdam:
2007.
1c
Microwave-Assisted Synthesis
of Heterocycles
Van der Eycken E.
Kappe CO.
Springer;
New
York:
2006.
2 See, for example: Sheldon RA.
Arends I.
Hanefeld U.
Green Chemistry and
Catalysis
Wiley-VCH;
Weinheim:
2007.
3 See: Young DD.
Sripada L.
Deiters A.
J.
Comb. Chem.
2007,
9:
735 ;
and references therein
For recent reviews, see:
4a
Agenet N.
Buisine O.
Slowinski F.
Gandon V.
Aubert C.
Malacria M. In Organic
Reactions
Vol. 68:
RajanBabu TV.
Wiley;
Hoboken:
2007.
p.1
4b
Gandon V.
Aubert C.
Malacria M.
Chem.
Commun.
2006,
2209
4c
Chopade PR.
Louie J.
Adv. Synth.
Catal.
2006,
348:
2307
4d
Miljanić O.
Vollhardt KPC. In
Carbon-Rich Compounds:
From Molecules to Materials
Haley MM.
Tykwinski RR.
Wiley-VCH;
Weinheim:
2006.
p.140
4e
Kotha S.
Brahmachar E.
Lahiri K.
Eur.
J. Org. Chem.
2005,
4741
4f
Yamamoto Y.
Curr.
Org. Chem.
2005,
9:
1699
4g For an early review of
CpCo-mediated [2+2+2] cycloadditions, see: Vollhardt KPC.
Angew.
Chem., Int. Ed. Engl.
1984,
23:
539
Other complexes based on Ru, Rh,
and Ni, reported to effect the cocycloaddition of two alkyne units
to double bonds, failed for these substrates. For recent leading
references to such complexes, see:
5a
Varela JA.
Rubín SG.
Castedo L.
Saá C.
J.
Org. Chem.
2008,
73:
1320
5b
Shibata T.
Tsuchikama K.
Org. Biomol. Chem.
2008,
6:
1317
5c
Rayabarapu DK.
Cheng C.-H.
Acc. Chem. Res.
2007,
40:
971
5d
Tanaka K.
Nishida G.
Sagae H.
Hirano M.
Synlett
2007,
1426
Furans and thiophenes:
6a
Boese R.
Harvey DF.
Malaska MJ.
Vollhardt KPC.
J.
Am. Chem. Soc.
1994,
116:
11153
6b
Peréz D.
Siesel BA.
Malaska MJ.
David E.
Vollhardt KPC.
Synlett
2000,
306
Indoles:
6c
Eichberg MJ.
Vollhardt KPC. In
Strategies and Tactics in Organic Synthesis
Vol.
4:
Harmata M.
Elsevier
Science;
Oxford:
2004.
Chap 14.
p.365
6d
Eichberg MJ.
Dorta RL.
Grotjahn DB.
Lamottke K.
Schmidt M.
Vollhardt KPC.
J.
Am. Chem. Soc.
2001,
123:
9324
6e
Eichberg MJ.
Dorta RL.
Lamottke K.
Vollhardt KPC.
Org.
Lett.
2000,
2:
2479
6f
Boese R.
Van Sickle AP.
Vollhardt KPC.
Synthesis
1994,
1374
6g
Grotjahn DB.
Vollhardt KPC.
J.
Am. Chem. Soc.
1986,
108:
2091
6h Pyrroles: Sheppard GS.
Vollhardt KPC.
J.
Org. Chem.
1986,
51:
5496
6i Imidazoles: Boese R.
Knölker H.-J.
Vollhardt KPC.
Angew. Chem., Int. Ed.
Engl.
1987,
26:
1035
Pyrimidines:
6j
Pellissier H.
Rodriguez J.
Vollhardt KPC.
Chem. Eur. J.
1999,
5:
3549
6k
Boese R.
Rodriguez J.
Vollhardt KPC.
Angew. Chem., Int. Ed. Engl.
1991,
30:
993
Pyridones:
6l
Aubert C.
Betschmann P.
Eichberg MJ.
Gandon V.
Geny A.
Heckrodt TJ.
Lehmann J.
Malacria M.
Masjost B.
Paredes E.
Vollhardt KPC.
Whitener GD.
Chem. Eur. J.
2007,
13:
7443
6m
Aubert C.
Gandon V.
Heckrodt TJ.
Malacria M.
Paredes E.
Vollhardt KPC.
Chem.
Eur. J.
2007,
13:
7466
7a
Geny A.
Lebuf D.
Rouquié G.
Vollhardt KPC.
Malacria M.
Gandon V.
Aubert C.
Chem. Eur. J.
2007,
13:
5408
7b
Gandon V.
Leboeu f D.
Amslinger S.
Vollhardt KPC.
Malacria M.
Aubert C.
Angew. Chem. Int.
Ed.
2005,
44:
7114
For a recent compilation of references
to cycloadditions with alkynyl boronates, see:
8a
Delaney PM.
Browne DL.
Adams H.
Plant A.
Harrity JPA.
Tetrahedron
2008,
64:
866
For reviews on dienyl- and vinylboranes, see:
8b
Albrecht K.
Kaufmann DE. In
Science of Synthesis
Vol.
6:
Kaufmann DE.
Matteson DS.
Thieme;
Stuttgart:
2005.
p.697
8c
Vaultier M.
Alcaraz G. In Science
of Synthesis
Vol. 6:
Kaufmann DE.
Matteson DS.
Thieme;
Stuttgart:
2005.
p.721
8d For a monograph, see:
Boronic Acids: Preparation and Applications
in Organic Synthesis and Medicine
Hall DG.
Wiley-VCH;
Weinheim:
2005.
8e See also: Gandon V.
Aubert C.
Malacria M.
Curr. Org. Chem.
2005,
9:
1699
9 See also: Gandon V.
Aubert C.
Malacria M.
Vollhardt KPC.
Chem.
Commun.
2008,
1599
See, for example:
10a
Murakami M.
Usui I.
Hasegawa M.
Matsuda T.
J. Am. Chem. Soc.
2005,
127:
1366
10b
Pereira S.
Srebnik M.
Organometallics
1995,
14:
3127
11
Gandon V.
Agenet N.
Vollhardt KPC.
Malacria M.
Aubert C.
J. Am. Chem. Soc.
2006,
128:
8509
12
Representative
Cyclization Conditions; Synthesis of 5: To a degassed solution
of N-(4-pentynoyl) indole (1;6g,¹4 197 mg, 1 mmol)
and 4,4,5,5-tetramethyl-2-(3-methylbut-1-ynyl)[1,3,2]dioxaborolane
(2; 242 mg, 1.25 mmol) in anhyd THF (15
mL) at 0 ˚C under an atmosphere of argon was added η5-cyclopentadienylbis(ethene)cobalt
(150 mg, 0.833 mmol) in anhyd, degassed THF (6 mL) over a period
of 3 h via syringe pump. The ensuing dark-red solution was treated with
bright yellow Fe(NO3)3˙9H2O
(337 mg, 0.834 mmol) in THF-H2O (5 mL, 3:1).
After stirring for 5 min at 0 ˚C, the brown mixture was
poured into iced water (50 mL) and the solution was extracted with
CH2Cl2 (3 × 100 mL), followed by
sat. aq NaHCO3 (3 × 150 mL). The extracts were
dried (MgSO4), filtered through a short silica gel column
to give a red-orange foam, and then subjected to flash chromatography
on silica gel (hexanes-acetone, 9:1) to yield 5 (189 mg, 58%) as a white solid;
mp 91-92 ˚C.
All new compounds gave satisfactory
elemental analytical and/or HRMS data. For selected spectra,
see: 3: ¹H NMR (500
MHz, CDCl3): δ = 1.21 (d, J = 7.0 Hz, 3 H, (CH
3)2CH], 1.25
(s, 6 H, Me), 1.32 (s, 6 H, Me), 1.48 [d, J = 6.5
Hz, 3 H, (CH
3)2CH],
1.80-1.85 (m, 1 H, CH2), 1.98-2.03
(m, 1 H, CH2), 2.52-2.66 [m, 3 H, CH2,
(CH3)2CH],
2.55 (d, J = 8.0 Hz, 1 H, CH),
3.24 (d, J = 7.5 Hz, 1 H, CH),
4.52 (s, 5 H, Cp), 5.01 (s, 1 H, CH), 6.98 (t, J = 7.5
Hz, 1 H, CHarom), 7.23 (t, J = 7.5
Hz, 1 H, CHarom), 7.77 (d, J = 7.5
Hz, 1 H, CHarom), 8.20 (d, J = 7.5
Hz, 1 H, CHarom). ¹³C NMR
(126 MHz, CDCl3): δ = 20.5, 24.5, 26.0,
26.1, 30.4, 31.5, 32.5, 45.2, 63.4, 64.9, 72.1, 81.1, 83.4, 106.4,
116.1, 122.8, 126.4, 127.6, 135.2, 142.7, 169.8; C-B not
detected. MS (FAB, NBA): m/z (%) = 515 (100) [M+].
4: ¹H NMR (500 MHz,
CDCl3): δ = 0.62 [d, J = 6.5 Hz, 3 H, (CH
3)2CH],
1.29 [d, J = 7.0 Hz,
3 H, (CH
3)2CH],
1.33 (s, 6 H, Me), 1.35 (s, 6 H, Me), 1.75-1.81 (m, 1 H,
CH2), 2.28 (m, 1 H, CH2), 2.43-2.48
(m, 1 H, CH2), 2.69-2.76 (m, 1 H, CH2),
3.08 [sep, J = 6.5
Hz, 1 H, (CH3)2CH],
3.83 (d, J = 11.0 Hz, 1 H, CH),
4.41 (d, J = 11.5 Hz, 1 H, CH),
4.67 (s, 1 H, CH), 4.68 (s, 5 H, Cp), 6.83 (t, J = 7.0
Hz, 1 H, CHarom), 6.99-7.04 (m, 2 H, CHarom),
7.68 (d, J = 7.5 Hz, 1 H, CHarom). ¹³C
NMR (126 MHz, CDCl3): δ = 19.5, 24.8,
25.5, 25.8, 29.5, 31.3, 33.3, 44.4, 62.1, 67.1, 76.3, 81.1, 82.8,
109.7, 115.5, 123.2, 124.4, 127.0, 133.6, 140.8, 169.8; C-B
not detected. MS (FAB, NBA): m/z (%) = 515 (100) [M+].
5: ¹H NMR (400 MHz,
CDCl3): δ = 0.93 [d, J = 6.8 Hz, 3 H, (CH
3)2CH],
0.96 [d, J = 6.8 Hz,
3 H, (CH
3)2CH],
1.32 (s, 6 H, Me), 1.35 (s, 6 H, Me), 2.47-2.57 (m, 2 H,
CH2), 2.65-2.81 (m, 2 H, CH2), 3.46 [sep, J = 6.9 Hz, 1 H, (CH3)2CH], 4.57 (d, J = 12.8
Hz, 1 H, CH), 5.01 (dd, J = 1.2,
13.6 Hz, 1 H, CH), 5.88 (br s, 1 H, CH), 6.98 (t, J = 7.2
Hz, 1 H, CHarom), 7.16 (t, J = 7.8
Hz, 1 H, CHarom), 7.31 (d, J = 7.6
Hz, 1 H, CHarom), 8.12 (d, J = 7.6
Hz, 1 H, CHarom). ¹³C NMR (101
MHz, CDCl3): δ = 21.0, 21.5, 24.8,
25.1, 26.0, 30.9, 32.8, 41.2, 58.6, 83.3, 115.9, 118.4, 123.6, 124.4,
127.5, 133.8, 136.0, 140.1, 152.1, 170.2; C-B not detected.
MS (70 eV, EI): m/z (%) = 391 (100) [M+],
286 (35), 260 (30). IR (neat): 2977, 1673, 1594, 1480, 1461, 1390,
1317, 1289, 1269, 1143, 1017, 857, 752, 732, 672 cm-¹.
7: ¹H NMR (500 MHz,
CDCl3): δ = 0.85 (t, J = 6.8
Hz, 3 H, Me), 1.25 (m, 8 H, CH2), 1.32 (s, 6 H, Me),
1.35 (s, 6 H, Me), 2.19-2.23 (m, 1 H, CH2),
2.47-2.58 (m, 3 H, CH2), 2.66-2.79
(m, 2 H, CH2), 4.57 (d, J = 14.0
Hz, 1 H, CH), 5.01 (d, J = 13.5
Hz, 1 H, CH), 5.70 (s, 1 H, CH), 6.97 (t, J = 7.0
Hz, 1 H, CHarom), 7.15 (t, J = 7.8
Hz, 1 H, CHarom), 7.33 (d, J = 7.5
Hz, 1 H, CHarom), 8.12 (d, J = 8.0
Hz, 1 H, CHarom). ¹³C NMR
(126 MHz, CDCl3): δ = 14.1, 22.6, 25.0,
25.7 (2 × C), 29.1, 29.8, 31.7, 32.7, 35.4, 41.2, 58.6,
83.3, 115.9, 123.6, 123.7, 124.5, 127.5, 133.5, 136.0, 140.1, 148.2,
170.3; C-B not detected. MS (70 eV, EI): m/z (%) = 433 (20) [M+],
432 (40), 431 (100), 361 (45), 285 (95). IR (neat): 2976, 2926, 2855,
1673, 1594, 1479, 1459, 1396, 1379, 1328, 1317, 1268, 1143, 1020,
857, 752 cm-¹.
9:
Diastereomer 1: ¹H NMR (500 MHz, CDCl3): δ = 1.32
(s, 6 H, Me), 1.36 (s, 6 H, Me), 1.50 (m, 2 H, CH2),
1.57 (m, 2 H, CH2), 1.68 (m, 1 H, CH2), 1.80
(m, 1 H, CH2), 2.52-2.58 (m, 2 H, CH2),
2.67-2.80 (m, 2 H, CH2), 3.44-3.50
(m, 1 H, CH2), 3.83-3.89 (m, 1 H, CH2),
4.20 (d, J = 11.5 Hz, 1 H, CH2),
4.58-4.67 (m, 3 H, CH, CHO, CH2), 5.04 (br d, J = 13.5 Hz, 1 H, CH), 6.00
(s, 1 H, CH), 6.97 (t, J = 7.5
Hz, 1 H, CHarom), 7.17 (t, J = 7.8
Hz, 1 H, CHarom), 7.34 (d, J = 7.5 Hz,
1 H, CHarom), 8.14 (d, J = 8.0
Hz, 1 H, CHarom). ¹³C NMR (126
MHz, CDCl3): δ = 19.5, 25.0 (2 × C),
25.4, 25.9, 30.7, 32.7, 41.3, 58.5, 62.2, 67.5, 83.8, 97.7, 110.1
(br, C-B), 116.1, 120.9, 123.6, 24.4, 127.7, 133.7, 135.1,
140.1, 143.0, 170.1. MS (70 eV, EI): m/z (%) = 463 (16) [M+],
462 (6), 461 (10), 363 (32), 361 (52). IR (neat): 3053, 2977, 2941,
2870, 1671, 1595, 1480, 1460, 1391, 1381, 1321, 1269, 1202, 1142,
1076, 1022, 869, 754, 736 cm-¹. Diastereomer
2: ¹H NMR (500 MHz, CDCl3): δ = 1.32
(s, 6 H, Me), 1.36 (s, 6 H, Me), 1.48-1.59 (m, 4 H, CH2),
1.66-1.83 (m, 2 H, CH2), 2.52-2.58
(m, 2 H, CH2), 2.67-2.80 (m, 2 H, CH2),
3.44-3.50 (m, 1 H, CH2), 3.83-3.89
(m, 1 H, CH2), 4.17 (d, J = 12.0
Hz, 1 H, CH2), 4.58-4.67 (m, 3 H, CH, CHO, CH2), 5.03
(d, J = 13.5 Hz, 1 H, CH), 6.00
(s, 1 H, CH), 6.97 (t,
J = 7.5
Hz, 1 H, CHarom), 7.17 (t, J = 7.8
Hz, 1 H, CHarom), 7.36 (d, J = 8.0
Hz, 1 H, CHarom), 8.14 (d, J = 8.0
Hz, 1 H, CHarom). ¹³C NMR
(126 MHz, CDCl3): δ = 19.4, 24.9, 25.0, 25.4,
25.9, 30.5, 32.7, 41.3, 58.5, 62.1, 68.0, 83.8, 98.6, 110.2 (br,
C-B), 116.1, 120.9, 123.6, 124.5, 127.7, 133.7, 135.2,
140.1, 143.3, 170.1.
11/12 mixture, major regioisomer 11: ¹H NMR (400 MHz, CDCl3): δ = 0.18
(s, 9 H, SiMe3), 1.33 (s, 6 H, Me), 1.37 (s, 6 H, Me),
2.45-3.03 (m, 4 H, CH2), 4.60 (d, J = 14.0 Hz, 1 H, CH), 5.01
(br d, J = 14.0 Hz, 1 H, CH),
6.01 (br s, 1 H, CH), 6.98 (t, J = 7.4
Hz, 1 H, CHarom), 7.17 (t, J = 7.8
Hz, 1 H, CHarom), 7.38 (d, J = 7.6
Hz, 1 H, CHarom), 8.14 (d, J = 7.6 Hz,
1 H, CHarom). ¹³C NMR (101
MHz, CDCl3): δ = 0.75, 24.6, 25.6,
26.1, 32.8, 42.1, 58.4, 83.9, 116.0, 122.7, 123.6, 124.6, 127.5,
130.8, 135.7, 140.2, 147.6, 170.5; C-B not detected. Minor
regioisomer 12: ¹H
NMR (400 MHz, CDCl3): δ = 0.36 (s,
9 H, SiMe3), 1.25 (s, 6 H, Me), 1.26 (s, 6 H, Me), 2.45-3.03
(m, 4 H, CH2), 4.52 (d, J = 12.8
Hz, 1 H, CH), 5.01 (dd, J = 1.6,
14.0 Hz, 1 H, CH), 6.11 (s, 1 H, CH), 6.98 (dt, J = 1.2,
7.4 Hz, 1 H, CHarom), 7.17 (t, J = 7.8 Hz,
1 H, CHarom), 7.38 (d, J = 7.6
Hz, 1 H, CHarom), 8.14 (d, J = 7.6
Hz, 1 H, CHarom). ¹³C NMR
(101 MHz, CDCl3): δ = 1.38, 24.8, 25.0,
25.1, 32.7, 43.3, 59.5, 83.8, 115.7, 122.5, 123.5, 124.3, 127.8,
129.1, 134.9, 140.2, 147.6, 170.5; C-B not detected. MS
(70 eV, EI): m/z (%) = 421
(52) [M+], 420 (66), 404 (28),
348 (22), 347 (20), 322 (30), 278 (65), 83 (100). IR (neat): 2979,
1667, 1594, 1537, 1481, 1460, 1398, 1317, 1247, 1216, 1142, 1091,
1058, 1020, 983, 960, 844, 755, 701, 667 cm-¹.
14/15 mixture,
major regioisomer 14: ¹H
NMR (500 MHz, CDCl3): δ = 1.07 (s,
6 H, Me), 1.13 (s, 6 H, Me), 2.60 (m, 2 H, CH2), 2.79
(m, 2 H, CH2), 4.70 (d, J = 13.5
Hz, 1 H, CH), 5.11 (d, J = 13.5
Hz, 1 H, CH), 6.07 (br s, 1 H, CH), 7.05 (t, J = 7.5
Hz, 1 H, CHarom), 7.20-7.40 (m, 6 H, CHarom),
7.52 (d, J = 7.5 Hz, 1 H, CHarom),
8.21 (d, J = 8.0 Hz, 1 H, CHarom). Minor
regioisomer 15: ¹H
NMR (500 MHz, CDCl3): δ = 1.16 (s,
6 H, Me), 1.20 (s, 6 H, Me), 2.60 (m, 2 H, CH2), 2.79
(m, 2 H, CH2), 4.81 (d, J = 14.0
Hz, 1 H, CH), 5.17 (d, J = 14.0 Hz,
1 H, CH), 5.95 (br s, 1 H, CH), 6.67 (t, J = 7.5
Hz, 1 H, CHarom), 7.12 (t, J = 7.5
Hz, 1 H, CHarom), 7.20-7.40 (m, 6 H, CHarom),
8.17 (d, J = 8.0 Hz, 1 H, CHarom). ¹³C
NMR (126 MHz, CDCl3; 14/15 mixture): δ = 24.2,
24.6 (2 × C), 24.7, 26.0, 26.1, 30.9, 32.8, 33.1, 36.6,
41.9, 44.0, 58.1, 58.9, 83.5, 83.6, 116.0, 116.2, 120.8, 123.0,
123.1, 123.8, 124.7, 125.0, 127.1, 127.2, 127.7, 127.8, 127.9 (2 × C),
129.0, 132.2, 132.4, 134.9, 140.2, 140.3, 141.4, 142.8, 144.7, 144.9, 169.4,
169.9; C-B (2 × C) not detected. MS (70 eV, EI):
m/z (%) = 425
(18) [M+], 424 (33), 423 (86),
307 (52), 297 (60), 169 (41), 84 (100). IR (neat): 3015, 2979, 2930,
1705, 1655, 1594, 1482, 1408, 1367, 1317, 1141, 1066, 1023, 853, 755,
702, 667 cm-¹.
17: ¹H
NMR (500 MHz, CDCl3): δ = 0.88 [d, J = 7.0 Hz, 3 H, (CH
3)2CH],
0.91 [d, J = 7.0 Hz,
3 H, (CH
3)2CH],
1.15 (s, 6 H, Me), 1.20 (s, 6 H, Me), 2.47 (m, 2 H, CH2),
2.57 (dd,
J = 6.4,
14.3 Hz, 1 H, CH2), 2.66 (dd, J = 6.4,
13.0 Hz, 1 H, CH2), 3.34 [sep, J = 7.0
Hz, 1 H, (CH3)2CH],
4.18 (br d, J = 14.6 Hz, 1 H,
CH), 4.70 (d, J = 14.4 Hz, 1
H, CH), 5.36 (m, 1 H, CH), 5.83 (br s, 1 H, CH), 6.80 (m, 1 H, CH). ¹³C
NMR (126 MHz, CDCl3): δ = 21.2, 24.4,
24.7, 24.9, 26.6, 30.9, 31.6, 45.4, 55.5, 82.9, 117.4, 117.9, 125.0,
132.5, 150.8, 167.1; C-B not detected. MS (70 eV, EI): m/z (%) = 341
(12) [M+], 340 (11), 339 (30),
326 (11), 298 (10), 224 (6), 198 (8), 185 (9), 129 (16), 83 (100).
IR (neat): 2976, 2872, 1716, 1643, 1518, 1468, 1412, 1371, 1220,
1144, 1110, 1078, 1016, 983, 951, 924, 885, 858, 831, 787, 744,
674 cm-¹.
19: ¹H
NMR (500 MHz, CDCl3): δ = 1.04 [d, J = 6.9 Hz, 6 H, (CH
3)2CH],
1.21 (s, 12 H, Me), 1.95 (quint, J = 6.0
Hz, 2 H, CH2), 2.50 (sep, J = 7.0
Hz, 1 H, CH), 2.54 (td, J = 2.0, 6.0
Hz, 2 H, CH2), 3.95 (t, J = 6.0
Hz, 2 H, CH2), 5.38 (s, 1 H, CH), 6.16 (m, 1 H, CH),
6.42 (m, 1 H, CH), 6.59 (m, 1 H, H-2), 6.61 (br s, 1 H, CH). ¹³C
NMR (126 MHz, CDCl3): δ = 21.7, 23.9,
24.9, 25.6, 37.2, 45.5, 82.7, 103.1, 108.3, 119.9, 120.7, 129.6,
131.8, 165.0; C-B not detected. MS (70 eV, EI): m/z (%) = 327
(10) [M+], 312 (10), 284 (26),
184 (40), 59 (100). IR (neat): 3100, 2972, 2871, 1695, 1620, 1458, 1380,
1331, 1259, 1107, 1077, 970, 851, 756, 722, 667 cm-¹.
13a
Grotjahn DB.
Vollhardt KPC.
J. Am. Chem. Soc.
1990,
112:
5653
13b
Grotjahn DB.
Vollhardt KPC.
Synthesis
1993,
579
13c Aechtner, T.; Barry,
D. A.; Grotjahn, D. B.; Vollhardt, K. P. C. unpublished results.
14 The acylation of indole was modified
from that described in ref. 6b, according to: Teranishi K.
Nakatsuka S.
Goto T.
Synthesis
1994,
1018