Planta Med 2008; 74(13): 1644-1650
DOI: 10.1055/s-2008-1074553
Perspective
© Georg Thieme Verlag KG Stuttgart · New York

Mechanisms of Cancer Chemopreventive Agents: A Perspective

Jacquelyn Francy-Guilford1 , John M. Pezzuto1
  • 1College of Pharmacy, University of Hawaii at Hilo, Hilo, Hawaii, USA
Further Information

Publication History

Received: February 20, 2008 Revised: April 19, 2008

Accepted: April 22, 2008

Publication Date:
06 June 2008 (online)

Abstract

A fundamental question addressed by drug development programs is how agents being tested function on a molecular level. Using resveratrol, curcumin and EGCG as examples, it is clear that a definitive mechanism of action for cancer chemopreventive agents is not available despite decades of exhaustive research. This is profoundly evident based on the myriad of biological responses that have been observed at the cellular level, and even more overwhelming when considering gene expression data that are now available. The situation is confounded further when chemopreventive agents are used in combination, even though superior clinical responses are anticipated. The best hope for delineating tangible, meaningful mechanisms resides in the use of complex physiological systems and computer models to decipher the most critical pathways that are appropriate for targeting with chemopreventive agents, their analogues, and combination treatments. Definitive answers concerning clinical efficacy are only available through human trials. Given the enormity of these tasks, together with the urgency of continuing the fight against cancer, it is adequate to move ahead with chemopreventive drug development on a semi-empirical basis, bearing in mind the importance of limiting toxic side effects.

References

  • 1 Surveillance and Epidemiology and End Results (SEER) Cancer Statistics Review. 1975 – 2004 National Cancer Institute, National Institutes of Health
  • 2 Kelloff G J, Crowell J A, Steele V E, Lubet R A, Boone C W, Malone W A. et al . Progress in cancer chemoprevention.  Ann N Y Acad Sci. 1999;  889 1-13
  • 3 Fujiki H, Suganuma M, Imai K, Nakachi K. Green tea: cancer preventive beverage and/or drug.  Cancer Lett. 2002;  188 9-13
  • 4 Surh Y J. Cancer chemoprevention with dietary phytochemicals.  Nat Rev Cancer. 2003;  3 768-80
  • 5 Jang M, Cai L, Udeani G O, Slowing K V, Thomas C F, Beecher C W. et al . Cancer chemopreventive activity of resveratrol, a natural product derived from grapes.  Science. 1997;  275 218-20
  • 6 Brakenhielm E, Cao R, Cao Y. Suppression of angiogenesis, tumor growth, and wound healing by resveratrol, a natural compound in red wine and grapes.  Faseb J. 2001;  15 1798-800
  • 7 Agarwal C, Sharma Y, Agarwal R. Anticarcinogenic effect of a polyphenolic fraction isolated from grape seeds in human prostate carcinoma DU145 cells: modulation of mitogenic signaling and cell-cycle regulators and induction of G1 arrest and apoptosis.  Mol Carcinogen. 2000;  28 129-38
  • 8 Pezzuto J M. Resveratrol as a cancer chemopreventive agent. In: Aggarwal BB, Shishodia S, editors. Resveratrol in health and disease.  New York: Marcel Dekker,. Inc;  2006 233-383
  • 9 Pezzuto J M. Resveratrol as an inhibitor of carcinogenesis. Pharm Biol 2008 46, in press
  • 10 Narayanan B A, Narayanan N K, Stoner G D, Bullock B P. Interactive gene expression pattern in prostate cancer cells exposed to phenolic antioxidants.  Life Sci. 2002;  70 1821-39
  • 11 Yu R, Hebbar V, Kim D W, Mandlekar S, Pezzuto J M, Kong A N. Resveratrol inhibits phorbol ester and UV-induced activator protein 1 activation by interfering with mitogen-activated protein kinase pathways.  Mol Pharmacol. 2001;  60 217-24
  • 12 Shishodia S, Chaturvedi M M, Aggarwal B B. Role of curcumin in cancer therapy.  Curr Probl Cancer. 2007;  31 243-305
  • 13 Aggarwal B B, Kumar A, Bharti A C. Anticancer potential of curcumin: preclinical and clinical studies.  Anticancer Res. 2003;  23 363-98
  • 14 Shishodia S, Amin H M, Lai R, Aggarwal B B. Curcumin (diferuloylmethane) inhibits constitutive NF-kappaB activation, induces G1/S arrest, suppresses proliferation, and induces apoptosis in mantle cell lymphoma.  Biochem Pharmacol. 2005;  70 700-13
  • 15 Narayan S. Curcumin, a multi-functional chemopreventive agent, blocks growth of colon cancer cells by targeting beta-catenin-mediated transactivation and cell-cell adhesion pathways.  J Mol Histol. 2004;  35 301-7
  • 16 Romiti N, Tongiani R, Cervelli F, Chieli E. Effects of curcumin on P-glycoprotein in primary cultures of rat hepatocytes.  Life Sci. 1998;  62 2349-58
  • 17 Mukhopadhyay A, Banerjee S, Stafford L J, Xia C, Liu M, Aggarwal B B. Curcumin-induced suppression of cell proliferation correlates with down-regulation of cyclin D1 expression and CDK4-mediated retinoblastoma protein phosphorylation.  Oncogene. 2002;  21 8852-61
  • 18 Anuchapreeda S, Leechanachai P, Smith M M, Ambudkar S V, Limtrakul P N. Modulation of P-glycoprotein expression and function by curcumin in multidrug-resistant human KB cells.  Biochem Pharmacol. 2002;  64 573-82
  • 19 Chen A, Xu J, Johnson A C. Curcumin inhibits human colon cancer cell growth by suppressing gene expression of epidermal growth factor receptor through reducing the activity of the transcription factor Egr-1.  Oncogene. 2006;  25 278-87
  • 20 Huang T S, Lee S C, Lin J K. Suppression of c-Jun/AP-1 activation by an inhibitor of tumor promotion in mouse fibroblast cells.  Proc Natl Acad Sci U S A. 1991;  88 5292-6
  • 21 Chun K S, Keum Y S, Han S S, Song Y S, Kim S H, Surh Y J. Curcumin inhibits phorbol ester-induced expression of cyclooxygenase-2 in mouse skin through suppression of extracellular signal-regulated kinase activity and NF-kappaB activation.  Carcinogenesis. 2003;  24 1515-24
  • 22 Hussain A R, Al-Rasheed M, Manogaran P S, Al-Hussein K A, Platanias L C, Al Kuraya K. et al . Curcumin induces apoptosis via inhibition of PI3′-kinase/AKT pathway in acute T cell leukemias.  Apoptosis. 2006;  11 245-54
  • 23 Marcu M G, Jung Y J, Lee S, Chung E J, Lee M J, Trepel J. et al . Curcumin is an inhibitor of p300 histone acetylatransferase.  Med Chem. 2006;  2 169-74
  • 24 Han S S, Chung S T, Robertson D A, Ranjan D, Bondada S. Curcumin causes the growth arrest and apoptosis of B cell lymphoma by downregulation of egr-1, c-myc, bcl-XL, NF-kappa B, and p53.  Clin Immunol. 1999;  93 152-61
  • 25 Korutla L, Cheung J Y, Mendelsohn J, Kumar R. Inhibition of ligand-induced activation of epidermal growth factor receptor tyrosine phosphorylation by curcumin.  Carcinogenesis. 1995;  16 1741-5
  • 26 Takahashi M, Ishiko T, Kamohara H, Hidaka H, Ikeda O, Ogawa M. et al .Curcumin (1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione) blocks the chemotaxis of neutrophils by inhibiting signal transduction through IL-8 receptors. Mediators Inflamm published online 28 June 2007: doi: 10.1155/2007/10 767
  • 27 Lin J K. Cancer chemoprevention by tea polyphenols through modulating signal transduction pathways.  Arch Pharm Res. 2002;  25 561-71
  • 28 Young J D, Lee E M. Inhibition of tumour invasion and angiogenesis by epigallocatechin gallate (EGCG), a major component of green tea.  Int J Exp Pathol. 2001;  82 309-16
  • 29 Liang Y C, Lin-shiau S Y, Chen C F, Lin J K. Suppression of extracellular signals and cell proliferation through EGF receptor binding by (−)-epigallocatechin gallate in human A431 epidermoid carcinoma cells.  J Cell Biochem. 1997;  67 55-65
  • 30 Lee S F, Liang Y C, Lin J K. Inhibition of 1,2,4-benzenetriol-generated active oxygen species and induction of phase II enzymes by green tea polyphenols.  Chem Biol Interact. 1995;  98 283-301
  • 31 Lin J K, Liang Y C, Lin-Shiau S Y. Cancer chemoprevention by tea polyphenols through mitotic signal transduction blockade.  Biochem Pharmacol. 1999;  58 911-5
  • 32 Katiyar S K, Afaq F, Azizuddin K, Mukhtar H. Inhibition of UVB-induced oxidative stress-mediated phosphorylation of mitogen-activated protein kinase signaling pathways in cultured human epidermal keratinocytes by green tea polyphenol (−)-epigallocatechin-3-gallate.  Toxicol Appl Pharmacol. 2001;  176 110-7
  • 33 Masuda M, Suzui M, Lim J T, Deguchi A, Soh J W, Weinstein I B. Epigallocatechin-3-gallate decreases VEGF production in head and neck and breast carcinoma cells by inhibiting EGFR-related pathways of signal transduction.  J Exp Ther Oncol. 2002;  2 350-9
  • 34 Nomura M, Kaji A, He Z, Ma W Y, Miyamoto K, Yang C S. et al . Inhibitory mechanisms of tea polyphenols on the ultraviolet B-activated phosphatidylinositol 3-kinase-dependent pathway.  J Biol Chem. 2001;  276 46 624-31
  • 35 Pianetti S, Guo S, Kavanagh K T, Sonenshein G E. Green tea polyphenol epigallocatechin-3 gallate inhibits Her-2/neu signaling, proliferation, and transformed phenotype of breast cancer cells.  Cancer Res. 2002;  62 652-5
  • 36 Ahmad N, Gupta S, Mukhtar H. Green tea polyphenol epigallocatechin-3-gallate differentially modulates nuclear factor kappaB in cancer cells versus normal cells.  Arch Biochem Biophys. 2000;  376 338-46
  • 37 Narayanan B A, Narayanan N K, Re G G, Nixon D W. Differential expression of genes induced by resveratrol in LNCaP cells: P53-mediated molecular targets.  Int J Cancer. 2003;  104 204-12
  • 38 Jones S B, DePrimo S E, Whitfield M L, Brooks J D. Resveratrol-induced gene expression profiles in human prostate cancer cells.  Cancer Epidemiol Biomarkers Prev. 2005;  14 596-604
  • 39 Shi T, Liou L S, Sadhukhan P, Duan Z H, Novick A C, Hissong J G. et al . Effects of resveratrol on gene expression in renal cell carcinoma.  Cancer Biol Ther. 2004;  3 882-8
  • 40 Yang S H, Kim J S, Oh T J, Kim M S, Lee S W, Woo S K. et al . Genome-scale analysis of resveratrol-induced gene expression profile in human ovarian cancer cells using a cDNA microarray.  Int J Oncol. 2003;  22 741-50
  • 41 Park M J, Kim E H, Park I C, Lee H C, Woo S H, Lee J Y. et al . Curcumin inhibits cell cycle progression of immortalized human umbilical vein endothelial (ECV304) cells by up-regulating cyclin-dependent kinase inhibitor, p21WAF1/CIP1, p27KIP1 and p53.  Int J Oncol. 2002;  21 379-83
  • 42 Chen H W, Yu S L, Chen J J, Li H N, Lin Y C, Yao P L. et al . Anti-invasive gene expression profile of curcumin in lung adenocarcinoma based on a high throughput microarray analysis.  Mol Pharmacol. 2004;  65 99-110
  • 43 Ramachandran C, Rodriguez S, Ramachandran R, Raveendran Nair P K, Fonseca H, Khatib Z. et al . Expression profiles of apoptotic genes induced by curcumin in human breast cancer and mammary epithelial cell lines.  Anticancer Res. 2005;  25 3293-302
  • 44 Wang S I, Mukhtar H. Gene expression profile in human prostate LNCaP cancer cells by (−)-epigallocatechin-3-gallate.  Cancer Lett. 2002;  182 43-51
  • 45 Wyrick J J, Young R A. Deciphering gene expression regulatory networks.  Curr Opin Genet Dev. 2002;  12 130-6
  • 46 Forrest A R, Taylor D F, Crowe M L, Chalk A M, Waddell N J, Kolle G. et al . Genome-wide review of transcriptional complexity in mouse protein kinases and phosphatases.  Genome Biol. 2006;  7 26
  • 47 Reddy B S. Strategies for colon cancer prevention: combination of chemopreventive agents.  Subcell Biochem. 2007;  42 213-25
  • 48 Khafif A, Schantz S P, Chou T C, Edelstein D, Sacks P G. Quantitation of chemopreventive synergism between (−)-epigallocatechin-3-gallate and curcumin in normal, premalignant and malignant human oral epithelial cells.  Carcinogenesis. 1998;  19 419-24
  • 49 Cruz-Correa M, Shoskes D A, Sanchez P, Zhao R, Hylind L M, Wexner S D. et al . Combination treatment with curcumin and quercetin of adenomas in familial adenomatous polyposis.  Clin Gastroenterol Hepatol. 2006;  4 1035-8
  • 50 Hudson E A, Howells L M, Gallacher-Horley B, Fox L H, Gescher A, Manson M M. Growth-inhibitory effects of the chemopreventive agent indole-3-carbinol are increased in combination with the polyamine putrescine in the SW480 colon tumour cell line.  BMC Cancer. 2003;  3 2
  • 51 Jacoby R F, Cole C E, Hawk E T, Lubet R A. Ursodeoxycholate/Sulindac combination treatment effectively prevents intestinal adenomas in a mouse model of polyposis.  Gastroenterology. 2004;  127 838-44
  • 52 Ratko T A, Detrisac C J, Dinger N M, Thomas C F, Kelloff G J, Moon R C. Chemopreventive efficacy of combined retinoid and tamoxifen treatment following surgical excision of a primary mammary cancer in female rats.  Cancer Res. 1989;  49 4472-6
  • 53 Rao C V, Tokumo K, Rigotty J, Zang E, Kelloff G, Reddy B S. Chemoprevention of colon carcinogenesis by dietary administration of piroxicam, alpha-difluoromethylornithine, 16 alpha-fluoro-5-androsten-17-one, and ellagic acid individually and in combination.  Cancer Res. 1991;  51 4528-34
  • 54 Ip C, Ganther H E. Combination of blocking agents and suppressing agents in cancer prevention.  Carcinogenesis. 1991;  12 365-7
  • 55 Bhuvaneswari V, Velmurugan B, Abraham S K, Nagini S. Tomato and garlic by gavage modulate 7,12-dimethylbenz[a]anthracene-induced genotoxicity and oxidative stress in mice.  Braz J Med Biol Res. 2004;  37 1029-34
  • 56 Velmurugan B, Nagini S. Combination chemoprevention of experimental gastric carcinogenesis by s-allylcysteine and lycopene: modulatory effects on glutathione redox cycle antioxidants.  J Med Food. 2005;  8 494-501
  • 57 Garewal H S. Beta-carotene and vitamin E in oral cancer prevention.  J Cell Biochem Suppl. 1993;  17F 262-9
  • 58 Bruggeman F J, Westerhoff H V. The nature of systems biology.  Trends Microbiol. 2007;  15 45-50
  • 59 Ziegler R G, Colavito E A, Nartge P, McAdams M J, Schoenberg J B, Mason T J. et al . Importance of α-carotene, β-carotene, and other phytochemicals in the etiology of lung cancer.  J Natl Cancer Inst. 1996;  88 612-5

Dr. John M. Pezzuto

College of Pharmacy

University of Hawaii at Hilo

60 Nowelo Street

Suite 101

Hilo

Hawaii 96720

USA

Phone: +1-808-443-5900

Fax: +1-808-443-5903

Email: pezzuto@hawaii.edu

    >