Abstract
Sonogashira reaction catalyzed by cobalt hollow nanospheres has been developed. Coupling
of alkynes with aryl iodide or aryl bromide in the presence of potassium carbonate,
triphenylphosphine, and cuprous iodide provides the corresponding products with moderate
to good yields, which reveals obvious advantages such as low-cost catalyst, the recyclability
of the catalyst, and simple experimental operation.
Key words
cobalt hollow nanospheres - catalysis - Sonogashira reaction - cross-coupling - alkynes
References and Notes
<A NAME="RW01008ST-1A">1a </A>
Sonogashira K.
Tohda Y.
Hagihara N.
Tetrahedron Lett.
1975,
16:
4467
<A NAME="RW01008ST-1B">1b </A>
Sonogashira K.
Yatake T.
Tohda Y.
Takahashi S.
Hagihara N.
J. Chem. Soc., Chem. Commun.
1977,
291
<A NAME="RW01008ST-1C">1c </A>
Sonogashira K. In Metal-Catalyzed Cross-Coupling Reactions
Stang PJ.
Diederich F.
Wiley-VCH;
Weinheim:
1998.
p.203
<A NAME="RW01008ST-1D">1d </A>
Sonogashira K. In Comprehensive Organic Synthesis
Vol. 3:
Trost BM.
Fleming I.
Pergamon Press;
New York:
1991.
p.521
<A NAME="RW01008ST-1E">1e </A>
Rafael Chinchilla R.
Nájera C.
Chem. Rev.
2007,
107:
874
<A NAME="RW01008ST-1F">1f </A>
Wang YF.
Deng W.
Liu L.
Guo QX.
Chin. J. Org. Chem.
2005,
25:
8
<A NAME="RW01008ST-2A">2a </A>
Brandsma L.
Synthesis of Acetylenes, Allenes and Cumulenes: Methods and Techniques
Elsevier;
Oxford:
2004.
p.293
<A NAME="RW01008ST-2B">2b </A>
Sonogashira K.
In Metal-Catalyzed Cross-Coupling Reactions
Vol. 1:
Diederich F.
de Meijere A.
Wiley-VCH;
Weinheim:
2004.
p.319
<A NAME="RW01008ST-2C">2c </A>
Tykwinski RR.
Angew. Chem. Int. Ed.
2003,
42:
1566
<A NAME="RW01008ST-2D">2d </A>
Negishi E.
Anastasia L.
Chem. Rev.
2003,
103:
1979
<A NAME="RW01008ST-2E">2e </A>
Díaz-Sanchez BR.
Iglesias-Arteaga MA.
Melgar-Fernandez R.
Juaristi E.
J. Org. Chem.
2007,
72:
4822
<A NAME="RW01008ST-2F">2f </A>
Sasabe H.
Inomoto N.
Kihara N.
Suzuki Y.
Ogawa A.
Takata T.
J. Polym. Sci., Part A: Polym. Chem.
2007,
45:
4154
<A NAME="RW01008ST-3A">3a </A>
Buchmeiser MR.
Wurst K.
J. Am. Chem. Soc.
1999,
121:
11101
<A NAME="RW01008ST-3B">3b </A>
Gil-Moltó J.
Karlstrom S.
Nájera C.
Tetrahedron
2005,
61:
12168
<A NAME="RW01008ST-3C">3c </A>
Gronnow MJ.
Luque R.
Macquarrie DJ.
Clark JH.
Green Chem.
2005,
7:
552
<A NAME="RW01008ST-3D">3d </A>
Li P.
Wang L.
Adv. Synth. Catal.
2006,
348:
681
<A NAME="RW01008ST-4">4 </A>
Arques A.
Aunon D.
Molina P.
Tetrahedron Lett.
2004,
45:
4337
<A NAME="RW01008ST-5">5 </A>
Nishide K.
Liang H.
Ito S.
Yoshifuji M.
J. Organomet. Chem.
2005,
690:
4809
<A NAME="RW01008ST-6A">6a </A>
Herrmann WA.
Angew. Chem. Int. Ed.
2002,
41:
1290
<A NAME="RW01008ST-6B">6b </A>
Peris E.
Crabtree RH.
Coord. Chem. Rev.
2004,
248:
2239
<A NAME="RW01008ST-6C">6c </A>
Crudden CM.
Allen DP.
Coord. Chem. Rev.
2004,
248:
2247
<A NAME="RW01008ST-6D">6d </A>
Gholap AR.
Venkatesan K.
Pasricha R.
Daniel T.
Lahoti RJ.
Srinivasan KV.
J. Org. Chem.
2005,
70:
4869
<A NAME="RW01008ST-6E">6e </A>
Dhudshia B.
Thadani AN.
Chem. Commun.
2006,
668
<A NAME="RW01008ST-6F">6f </A>
Kim JH.
Lee DH.
Jun BH.
Lee YS.
Tetrahedron Lett.
2007,
48:
7079
<A NAME="RW01008ST-7A">7a </A>
Moreno-Mañas M.
Pleixats R.
Acc. Chem. Res.
2003,
36:
638
<A NAME="RW01008ST-7B">7b </A>
Thathagar MB.
ten Elshof JE.
Rothenberg G.
Angew. Chem. Int. Ed.
2006,
45:
2886
<A NAME="RW01008ST-8">8 </A>
Caló V.
Nacci A.
Monopoli A.
Montingelli F.
J. Org. Chem.
2005,
70:
6040
<A NAME="RW01008ST-9">9 </A>
Son SU.
Jang Y.
Park J.
Na HB.
Park HM.
Yun HJ.
Lee J.
Hyeon T.
J. Am. Chem. Soc.
2004,
126:
5026
<A NAME="RW01008ST-10">10 </A>
Li Y.
Zhou P.
Dai Z.
Hu Z.
Sun P.
Bao J.
New J. Chem.
2006,
30:
832
<A NAME="RW01008ST-11A">11a </A>
Beletskaya IP.
Latyshev GV.
Tsvetkov AV.
Lukashev NV.
Tetrahedron Lett.
2003,
44:
5011
<A NAME="RW01008ST-11B">11b </A>
Wang L.
Li P.
Zhang Y.
Chem. Commun.
2004,
514
<A NAME="RW01008ST-12">12 </A>
Zhou P.
Li Y.
Sun P.
Zhou J.
Bao J.
Chem. Commun.
2007,
1418
<A NAME="RW01008ST-13">13 </A>
Thorand S.
Krause N.
J. Org. Chem.
1998,
63:
8551
<A NAME="RW01008ST-14">14 </A>
Siemsen P.
Livingston RC.
Diederich F.
Angew. Chem. Int. Ed.
2000,
39:
2632
<A NAME="RW01008ST-15">15 </A>
Typical Experimental Procedure
To NMP (2 mL) were added aryl halide (1 mmol) and terminal alkyne (1 mmol), then cobalt
nanoparticles (0.03 mmol, 3 mol%), Ph3 P (0.1 mmol, 10 mol%), CuI (0.02 mmol, 2 mol%), and K2 CO3 (1.5 mmol) were added in turn. The mixture was heated at 120 °C (for aromatic alkyne)
or 80 °C (for aliphatic alkyne) with stirring under a nitrogen atmosphere for the
appropriate time (see Table
[1 ]
, monitored by TLC) until the reaction was complete, then centrifuged. The solution
was separated and the precipitate was washed with Et2 O (3 × 5 mL). The solutions were combined and washed with H2 O, dried over anhyd Na2 SO4 , and purified by column chromatography on SiO2 with hexane-EtOAc (100:1) as eluent to yield the products. The precipitate was further
washed sufficiently with MeOH and Et2 O, then dried, and the cobalt nanoparticles were recovered. After being reused three
times, the yield of the product did not obviously decrease. 1-Methyl-4-phenylethynylbenzene: mp 71 °C. 1 H NMR (400 MHz, CDCl3 ): δ = 7.53-7.56 (m, 2 H), 7.45 (d, J = 8.0 Hz, 2 H), 7.35-7.38 (m, 3 H), 7.18 (d, J = 8.0 Hz, 2 H), 2.39 (s, 3 H). IR (KBr): ν = 3018, 2235, 1630, 1547 cm-1 . MS: m/z (%) = 192 (100) [M+ ], 101 (32). Hex-1-ynyl-benzene: light yellow oil. 1 H NMR (400 MHz, CDCl3 ): δ = 7.42 (d, J = 8.0 Hz, 2 H), 7.28-7.32 (m, 3 H), 2.41 (t, J = 6.9 Hz, 2 H), 1.47-1.62 (m, 4 H), 0.95 (t, J = 6.9 Hz, 3 H). IR (neat): ν = 3025, 2988, 2225, 1620, 1526 cm-1 . MS: m/z (%) = 158 (27) [M+ ], 115 (100), 129 (59), 143 (44).