Synlett 2008(7): 995-998  
DOI: 10.1055/s-2008-1072505
LETTER
© Georg Thieme Verlag Stuttgart · New York

Phosphoric Acid Diesters as Efficient Catalysts for Hydroaminations of Nonactivated Alkenes and an Application to Asymmetric Hydroaminations

Lutz Ackermann*, Andreas Althammer
Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr. 2, 37077 Göttingen, Germany
Fax: +49(551)396777; e-Mail: Lutz.Ackermann@chemie.uni-goettingen.de;
Further Information

Publication History

Received 24 December 2007
Publication Date:
17 March 2008 (online)

Abstract

Catalytic amounts of phosphoric acid diesters enabled highly efficient intramolecular hydroaminations of nonactivated alkenes. With an enantiomerically enriched Brønsted acid catalyst an unprecedented metal-free asymmetric hydroamination of a nonactivated alkene was accomplished.

    References and Notes

  • 1a Beller M. Seayad J. Tillack A. Jiao H. Angew. Chem. Int. Ed.  2004,  43:  3368 
  • 1b Müller TE. Beller M. Chem. Rev.  1998,  98:  675 
  • 2 Alonso F. Beletskaya IP. Yus M. Chem. Rev.  2004,  104:  3079 
  • 3 Brunet JJ. Neibecker D. In Catalytic Heterofunctionalization   Togni A. Grützmacher H. Wiley-VCH; Weinheim: 2001.  p.91-132  
  • Selected additional reviews:
  • 4a Lee AV. Schafer LL. Eur. J. Inorg. Chem.  2007,  2243 
  • 4b Widenhoefer RA. Han X. Eur. J. Org. Chem.  2006,  4555 
  • 4c Odom AL. Dalton Trans.  2005,  225 
  • 4d Hong S. Marks TJ. Acc. Chem. Res.  2004,  37:  673 
  • 4e Hartwig JF. Pure Appl. Chem.  2004,  76:  507 
  • 4f Duncan AP. Bergman RG. Chem. Rec.  2002,  2:  431 ; and references cited therein
  • For representative examples of organocatalytic conjugate additions of N-nucleophiles to activated alkenes, see:
  • 5a Fustero S. Jimenez D. Moscardo J. Catalan S. del Pozo C. Org. Lett.  2007,  9:  4251 
  • 5b Sibi MP. Itoh K. J. Am. Chem. Soc.  2007,  129:  8064 
  • 5c Diner P. Nielsen M. Marigo M. Jørgensen KA. Angew. Chem. Int. Ed.  2007,  46:  1983 
  • 5d Li H. Wang J. Xie H. Zu L. Jiang W. Duesler EN. Wang W. Org. Lett.  2007,  9:  965 
  • 5e Chen YK. Yoshida M. MacMillan DWC. J. Am. Chem. Soc.  2006,  128:  9328 
  • 5f Guerin DJ. Miller SJ.
    J. Am. Chem. Soc.  2002,  124:  2134 ; and references cited therein
  • 6a Hultzsch KC. Adv. Synth. Catal.  2005,  347:  367 
  • 6b Hultzsch KC. Org. Biomol. Chem.  2005,  1819 
  • 7 Roesky PW. Mueller TE. Angew. Chem. Int. Ed.  2003,  42:  2708 
  • 8 Aillaud I. Collin J. Hannedouche J. Schulz E. Dalton Trans.  2007,  5105 
  • For metal-catalyzed hydroamination reactions from our laboratories, see:
  • 9a Ackermann L. Organometallics  2003,  22:  4367 
  • 9b Ackermann L. Kaspar LT. Gschrei CJ. Chem. Commun.  2004,  2824 
  • 9c Ackermann L. Kaspar LT. J. Org. Chem.  2007,  72:  6149 
  • 9d Ackermann L. Synlett  2007,  507 ; and references cited therein
  • For acid-catalyzed hydroamidation reactions of olefins, which were found not applicable to more basic amines, see: Intramolecular:
  • 10a Schlummer B. Hartwig JF. Org. Lett.  2002,  4:  1471 
  • 10b Haskins CM. Knight DW. Chem. Commun.  2002,  2724 
  • 10c Haskins CM. Knight DW. Chem. Commun.  2005,  3162 
  • 10d Yin Y. Zhao G. Heterocycles  2006,  68:  23 
  • Intermolecular:
  • 10e Li Z. Zhang J. Brouwer C. Yang C.-G. Reich NW. He C. Org. Lett.  2006,  8:  4175 
  • 10f Rosenfeld DC. Shekhar S. Takemiya A. Utsunomiya M. Hartwig JF. Org. Lett.  2006,  8:  4179 
  • For acid-catalyzed hydroaminations with anilines as nucleophiles, see:
  • 11a Anderson LL. Arnold J. Bergman RG. J. Am. Chem. Soc.  2005,  127:  14542 
  • 11b Cherian AE. Domski GJ. Rose JM. Lobkovsky EB. Coates GW. Org. Lett.  2005,  7:  5135 
  • 12 Ackermann L. Kaspar LT. Althammer A. Org. Biomol. Chem.  2007,  1975 
  • 13 Akiyama T. Chem. Rev.  2007,  5744 
  • Representative examples:
  • 14a Hamilton GL. Kang EJ. Mba M. Toste FD. Science  2007,  317:  496 
  • 14b Nakashima D. Yamamoto H. J. Am. Chem. Soc.  2006,  128:  9626 
  • 14c Storer RI. Carrera DE. Ni Y. MacMillan DWC. J. Am. Chem. Soc.  2006,  128:  84 
  • 14d Hoffmann S. Seayad AM. List B. Angew. Chem. Int. Ed.  2005,  44:  7424 
  • 14e Rueping M. Sugiono E. Azap C. Theissmann T. Bolte M. Org. Lett.  2005,  7:  3781 
  • 14f Rowland GB. Zhang H. Rowland EB. Chennamadhavuni S. Wang Y. Antilla JC. J. Am. Chem. Soc.  2005,  127:  15696 
  • 14g Uraguchi D. Terada M. J. Am. Chem. Soc.  2004,  126:  5356 
  • 14h Akiyama T. Itoh J. Yokota K. Fuchibe K. Angew. Chem. Int. Ed.  2004,  43:  1566 ; and references cited therein
  • 14i For the elegant use of 3,3′-bis(trisarylsilyl)-substituted binaphtholate rare-earth-metal catalysts in asymmetric hydroaminations, see: Gribkov DV. Hultzsch KC. Hampel F. J. Am. Chem. Soc.  2006,  128:  3748 ; and references cited therein
  • 16 Representative Procedure: Synthesis of 2a (Table 3, Entry 1) A solution of 1a (162 mg, 0.495 mmol) and 3e (42.8 mg, 0.050 mmol) in dry Cl2HCCHCl2 (1.0 mL) was stirred under N2 for 23 h at 130 °C. At ambient temperature sat. aq NaHCO3 (25 mL) and Et2O (50 mL) were added. The separated aqueous phase was extracted with Et2O (2 × 50 mL). The combined organic layers were dried over Na2SO4 and concentrated in vacuo. The remaining residue was purified by column chromatography on silica gel (n-pentane-Et2O, 15:1) to yield 2a (158 mg, 97%) as a light yellow solid (mp 71.2-72.4 °C). 1H NMR (300 MHz, CDCl3): δ = 7.42-7.37 (m, 15 H), 4.12 (d, J = 13.3 Hz, 1 H), 3.70 (d, J = 10.0 Hz, 1 H), 3.30 (d, J = 13.3 Hz, 1 H), 2.99-2.83 (m, 3 H), 2.25 (dd, J = 12.2, 7.2 Hz, 1 H), 1.21 (d, J = 6.1 Hz, 3 H). 13C NMR (75 MHz, DEPT, CDCl3): δ = 150.5 (Cq), 148.6 (Cq), 139.9 (Cq), 128.6 (CH), 128.2 (CH), 128.1 (CH), 127.8 (CH), 127.4 (CH), 127.2 (CH), 126.8 (CH), 125.8 (CH), 125.4 (CH), 66.4 (CH2), 59.7 (CH), 58.0 (CH2), 52.5 (Cq), 47.9 (CH2), 19.5 (CH3). IR (ATR): 3061, 3029, 2960, 2924, 2788, 1491, 1445, 1373, 730, 695 cm-1. MS (EI): m/z (relative intensity) = 327 (18) [M+], 312 (75), 147 (100), 91 (64), 56 (98). HRMS (EI): m/z calcd for C24H25N 327.1987; found: 327.2002. The spectral data are in accordance with those reported in the literature: Bender CF. Widenhoefer RA. J. Am. Chem. Soc.  2005,  127:  1070 
15

Acetone, benzene, MTBE, cyclohexane, and CCl4 gave only traces of the desired product.

17

Under these reaction conditions, there was no indication for catalyst decomposition, and primary aminoalkenes reacted less efficiently.

18

Enantiomerically enriched catalyst 3a provided, under otherwise identical reaction conditions, only racemic product.