RSS-Feed abonnieren
DOI: 10.1055/s-2008-1067242
Comprehensive Experimental and Theoretical Studies of Configurationally Labile Epimeric Diamine Complexes of α-Lithiated Benzyl Carbamates
Publikationsverlauf
Publikationsdatum:
22. August 2008 (online)

Abstract
Different primary benzyl-type carbamates were deprotonated by sec-butyllithium in the presence of a tert-leucinol-derived bis(oxazoline) ligand. The resulting configurationally labile epimeric complexes equilibrated and one diastereomer was strongly favored in the equilibria. After dynamic thermodynamic resolution, the complexes could be trapped with different classes of electrophiles to yield highly enantioenriched secondary benzyl carbamates. The stereochemical course of the substitution reactions was elucidated. High-level quantum chemical investigations were performed and allowed a prediction of both the favored complex and the enantiomeric excess that could be expected within the reactions.
Key words
asymmetric synthesis - carbanions - lithium - bis(oxazoline) ligands - quantum chemical calculations
- Reviews:
- 1a
Hoppe D.Hense T. Angew. Chem., Int. Ed. Engl. 1997, 36: 2282 ; Angew. Chem. 1997, 109, 2376Reference Ris Wihthout Link - 1b
Hoppe D.Marr F.Brüggemann M. Top. Organomet. Chem. 2003, 5: 61Reference Ris Wihthout Link - 1c
Beak P.Johnson T.Kim D.Kim S. Top. Organomet. Chem. 2003, 5: 139Reference Ris Wihthout Link - 1d
Toru T.Nakamura S. Top. Organomet. Chem. 2003, 5: 177Reference Ris Wihthout Link - 1e
Hoppe D.Christoph G. The Chemistry of Organolithium CompoundsRappoport Z.Marek I. Wiley-VCH; Chichester: 2004. p.1058Reference Ris Wihthout Link - In case of configurationally stable lithiated intermediates, catalytic asymmetric reactions are possible:
- 2a
McGrath MJ.O’Brien P. Synthesis 2006, 2233Reference Ris Wihthout Link - 2b
McGrath MJ.O’Brien P. J. Am. Chem. Soc. 2005, 127: 16378Reference Ris Wihthout Link - Selected early contributions:
- 3a
Still WC.Sreekumar C. J. Am. Chem. Soc. 1980, 102 1201Reference Ris Wihthout Link - 3b
Hoppe D.Krämer T. Angew. Chem., Int. Ed. Engl. 1986, 25: 160 ; Angew. Chem. 1986, 98, 171Reference Ris Wihthout Link - 3c
Hoppe D.Carstens A.Krämer T. Angew. Chem., Int. Ed. Engl. 1990, 29: 1422 ; Angew. Chem. 1990, 102, 1455Reference Ris Wihthout Link - 3d
Carstens A.Hoppe D. Tetrahedron 1994, 50: 6097Reference Ris Wihthout Link - 3e
Hoppe D.Hintze F.Tebben P. Angew. Chem., Int. Ed. Engl. 1990, 29: 1424 ; Angew. Chem. 1990, 102, 1457Reference Ris Wihthout Link - 4a
Kerrick ST.Beak P. J. Am. Chem. Soc. 1991, 113: 9708Reference Ris Wihthout Link - 4b
Gawley RE.Zhang Q. J. Am. Chem. Soc. 1993, 115: 7515Reference Ris Wihthout Link - 4c
Pippel DJ.Weisenburger GA.Wilson SR.Beak P. Angew. Chem. Int. Ed. 1998, 37: 2522 ; Angew. Chem. 1998, 110, 2600Reference Ris Wihthout Link - 4d
Weisenburger GA.Faibish NC.Pippel DJ.Beak P. J. Am. Chem. Soc. 1999, 121: 9522Reference Ris Wihthout Link - 5
Basu A.Beak P. J. Am. Chem. Soc. 1996, 118: 1575 - 6a
Hammerschmidt F.Hanninger A. Chem. Ber. 1995, 128: 1069Reference Ris Wihthout Link - 6b
Hammerschmidt F.Hanninger A.Peric B.Völlenkle H.Werner A. Eur. J. Org. Chem. 1999, 3511Reference Ris Wihthout Link - See as well:
- 7a
Derwing C.Hoppe D. Synthesis 1996, 149Reference Ris Wihthout Link - 7b
Derwing C.Frank H.Hoppe D. Eur. J. Org. Chem. 1999, 3519Reference Ris Wihthout Link - 8a
Hoppe D.Kaiser B.Stratmann O.Fröhlich R. Angew. Chem., Int. Ed. Engl. 1997, 36: 2784 ; Angew. Chem. 1997, 109, 2872Reference Ris Wihthout Link - 8b
Stratmann O.Kaiser B.Fröhlich R.Meyer O.Hoppe D. Chem. Eur. J. 2001, 7: 423Reference Ris Wihthout Link - 9a
Nakamura S.Nakagawa R.Watanabe Y.Toru T. Angew. Chem. Int. Ed. 2000, 39: 353 ; Angew. Chem. 2000, 112, 361Reference Ris Wihthout Link - 9b
Nakamura S.Nakagawa R.Watanabe Y.Toru T. J. Am. Chem. Soc. 2000, 122: 11340Reference Ris Wihthout Link - 9c
Nakamura S.Furutani A.Toru T. Eur. J. Org. Chem. 2002, 1690Reference Ris Wihthout Link - 9d
Nakamura S.Ito Y.Wang L.Toru T. J. Org. Chem. 2004, 69: 1581Reference Ris Wihthout Link - For reviews on different enantiodeterming steps and mechanistic pathways:
- 10a
Beak P.Anderson DR.Curtis MD.Laumer JM.Pippel DJ.Weisenburger GA. Acc. Chem. Res. 2000, 33: 715Reference Ris Wihthout Link - 10b
Basu A.Thayumanavan S. Angew. Chem. Int. Ed. 2002, 41: 716 ; Angew. Chem. 2002, 114, 740Reference Ris Wihthout Link - 10c Especially for dynamic thermodynamic
resolution:
Park YS.Yum EK.Basu A.Beak P. Org. Lett. 2006, 8: 2667Reference Ris Wihthout Link - 11
Zarges W.Marsch M.Harms K.Koch W.Frenking G.Boche G. Chem. Ber. 1991, 124: 543 - 12a
Rein K.Goicoechea-Pappas M.Anklekar TV.Hart GC.Smith GA.Gawley RE. J. Am. Chem. Soc. 1989, 111: 2211Reference Ris Wihthout Link - 12b
Meyers AI.Guiles J.Warmus JS.Gonzales MA. Tetrahedron Lett. 1991, 32: 5505Reference Ris Wihthout Link - A pyramidal carbon atom is not a precondition for the occurrence of chirality in an ion pair as long as the cation is connected to one particular enantiotopic face. For the situation in lithiated benzyl sulfones see:
- 13a
Boche G. Angew. Chem., Int. Ed. Engl. 1989, 28: 277 ; Angew. Chem. 1989, 101, 286Reference Ris Wihthout Link - 13b
Gais H.-J.Hellmann GZ.Lindner HJ. Angew. Chem., Int. Ed. Engl. 1990, 29: 100 ; Angew. Chem. 1990, 102, 96Reference Ris Wihthout Link - 13c
Gais H.-J.Hellmann GZ. J. Am. Chem. Soc. 1992, 114: 4439Reference Ris Wihthout Link - 14a
Cram DJ.Mateos JL.Hauck F.Langmann A.Kopecky KR.Nielsen WD.Allinger J. J. Am. Chem. Soc. 1959, 81: 5774Reference Ris Wihthout Link - 14b
Cram DJ.Kingsbury CA.Rickborn B. J. Am. Chem. Soc. 1961, 83: 3688Reference Ris Wihthout Link - 14c
Nozaki H.Aratani T.Toraya T.Noyori R. Tetrahedron 1971, 27: 905Reference Ris Wihthout Link - 15 For a flattened benzylic carbanionic
center in a crystal structure see:
Boche G.Marsch M.Harbach J.Harms K.Ledig B.Schubert F.Lohr JCW.Ahlbrecht H. Chem. Ber. 1993, 126: 1887 - 16
Paquette LA.Gilday JP.Ra CS. J. Am. Chem. Soc. 1987, 109: 6858 - 17
Brook AG.Pascoe JD. J. Am. Chem. Soc. 1971, 93: 6224 - 18a
Wright A.West R. J. Am. Chem. Soc. 1974, 96: 3214Reference Ris Wihthout Link - 18b
Wright A.West R. J. Am. Chem. Soc. 1974, 96: 3227Reference Ris Wihthout Link - 18c
Linderman RJ.Ghannam A. J. Am. Chem. Soc. 1990, 112: 2392Reference Ris Wihthout Link - 19 Concerning the stereochemistry of
the benzylic position within [1,4]-reverse-Brook
rearrangements:
Bousbaa J.Ooms F.Krief A. Tetrahedron Lett. 1997, 38: 7625 - 20a
Komine N.Wang L.-F.Tomooka K.Nakai T. Tetrahedron Lett. 1999, 40: 6809Reference Ris Wihthout Link - 20b
Tomooka K.Wang L.-F.Komine N.Nakai T. Tetrahedron Lett. 1999, 40: 6813Reference Ris Wihthout Link - 20c
Tomooka K.Wang L.-F.Okazaki F.Nakai T. Tetrahedron Lett. 2000, 41: 6121Reference Ris Wihthout Link - 21 Chiral bis(oxazoline) ligands have
been used in a variety of asymmetric reactions in order to introduce
chiral information, for a recent review see:
Desimoni G.Faita G.Jørgensen KA. Chem. Rev. 2006, 106: 3561 - 22 Bis(oxazoline) 9d was
prepared according to:
Denmark SE.Nakajima N.Nicaise OJ.-C.Faucher A.-M.Edwards JP. J. Org. Chem. 1995, 60: 4884 - 23a
Hoppe D.Brönneke A. Synthesis 1982, 1045Reference Ris Wihthout Link - 23b
Hintze F.Hoppe D. Synthesis 1992, 1216Reference Ris Wihthout Link - 24a
Hoffmann RW.Lanz J.Metternich R.Tarara G.Hoppe D. Angew. Chem., Int. Ed. Engl. 1987, 26: 1145 ; Angew. Chem., 1987, 99, 1196Reference Ris Wihthout Link - 24b
Hoffmann RW.Rühl T.Harbach J. Liebigs Ann. Chem. 1992, 725Reference Ris Wihthout Link - 25a
Lange H.Huenerbein R.Fröhlich R.Grimme S.Hoppe D. Chem. Asian J. 2008, 3: 78Reference Ris Wihthout Link - 25b
Lange H.Huenerbein R.Fröhlich R.Grimme S.Hoppe D. Chem. Asian J. 2008, 3: 500Reference Ris Wihthout Link - B97-D:
- 27a
Grimme S. J. Comput. Chem. 2004, 25: 1463Reference Ris Wihthout Link - 27b
Grimme S. J. Comput. Chem. 2006, 27: 1787Reference Ris Wihthout Link - TZVPP-basis and TZVP-basis:
- 27c
Schäfer A.Huber C.Ahlrichs R. J. Chem. Phys. 1994, 100: 5829Reference Ris Wihthout Link - SCS-MP2:
- 27d
Grimme S. J. Chem. Phys. 2003, 118: 9095Reference Ris Wihthout Link - 28a
Clemente FR.Houk KN. J. Am. Chem. Soc. 2005, 127: 11294Reference Ris Wihthout Link - 28b
Gordillo R.Houk KN. J. Am. Chem. Soc. 2006, 128: 3543Reference Ris Wihthout Link - 29 For a first extension of the methodology
employing primary S-benzyl thiocarbamates,
see:
Lange H.Bergander R.Fröhlich R.Kehr S.Nakamura S.Shibata N.Toru T.Hoppe D. Chem. Asian J. 2008, 3: 88 - 30
Yanagisawa A.Nakashima H.Nakatsuka Y.Ishiba A.Yamamoto H. Bull. Chem. Soc. Jpn. 2001, 74: 1129 - For examples for the addition of carboxylic acid chlorides to mesomerically stabilized α-lithiated carbamates under inversion of configuration, see:
- 31a
Ref. 3c and 3d.
Reference Ris Wihthout Link - 31b
Zschage O.Schwark J.-R.Hoppe D. Angew. Chem., Int. Ed. Engl. 1990, 29: 296 ; Angew. Chem. 1990, 102, 336Reference Ris Wihthout Link - 31c
Zschage O.Schwark J.-R.Krämer T.Hoppe D. Tetrahedron 1992, 48: 8377Reference Ris Wihthout Link - 31d
Seppi M.Kalkofen R.Reupohl J.Fröhlich R.Hoppe D. Angew. Chem. Int. Ed. 2004, 43: 1423 ; Angew. Chem. 2004, 116, 1447Reference Ris Wihthout Link - Ester (+)-(S)-20d was prepared by asymmetric lithiation of benzyl carbamate 19 in the presence of chiral diamine (-)-sparteine (7) in n-hexane at -78 ˚C (4 M soln). Trapping of the equilibrated and crystallized intermediate epimeric complex (S C)-15˙7 with CO2 at -78 ˚C after 4 h and subsequent esterification of the resulting carboxylic acid (S)-22 with diazomethane yielded 78% of (+)-(S)-20d with 97% ee (HPLC) {[α]D ²0 +107.2 (c 0.92, MeOH)}. Compare:
- 33a
ref. 1a.
Reference Ris Wihthout Link - 33b
Retzow S. Diploma Thesis University of Kiel; Germany: 1990.Reference Ris Wihthout Link - 34
Yang WK.Cho BT. Tetrahedron: Asymmetry 2000, 11: 2947 - 35
Corey EJ.Schmidt G. Tetrahedron Lett. 1979, 20: 399 - 38
Tomooka K.Shimizu H.Nakai T. J. Organomet. Chem. 2001, 624: 364 ; and references cited therein - Turbomole V5.9:
- 39a
Ahlrichs, R. et al.; University of Karlsruhe: Germany, 2006, see: http://www.turbomole.com.
Reference Ris Wihthout Link - ‘grid m4’:
- 39b
Treutler O.Ahlrichs R. J. Chem. Phys. 1995, 102: 346Reference Ris Wihthout Link - RI-approximation:
- 39c
Eichkorn K.Treutler O.Öhm H.Häser M.Ahlrichs R. Chem. Phys. Lett. 1995, 242: 652Reference Ris Wihthout Link - 39d
Eichkorn K.Weigend F.Treutler O.Ahlrichs R. Theor. Chem. Acc. 1997, 97: 119Reference Ris Wihthout Link - RI-MP2:
- 39e
Sierka M.Hogekamp A.Ahlrichs R. J. Chem. Phys. 2003, 118: 9136Reference Ris Wihthout Link - 39f
Weigend F.Häser M. Theor. Chem. Acc. 1997, 97: 331Reference Ris Wihthout Link - 39g
Weigend F.Häser M.Patzelt H.Ahlrichs R. Chem. Phys. Lett. 1998, 294: 143Reference Ris Wihthout Link - 41
Lange H.Fröhlich R.Hoppe D. Tetrahedron 2008, 64: 9123Reference Ris Wihthout Link - 42
Kofron WG.Baclawski LM. J. Org. Chem. 1976, 41: 1879 - 43
de Boer TJ.Backer HJ. Org. Synth. Coll. Vol. IV John Wiley & Sons; London: 1963. p.250 - 44a
Blessing RH. Acta Crystallogr., Sect. A 1995, 51: 33Reference Ris Wihthout Link - 44b
Blessing RH. J. Appl. Cryst. 1997, 30: 421Reference Ris Wihthout Link - 45
Otwinowski Z.Borek D.Majewski W.Minor W. Acta Crystallogr., Sect. A 2003, 59: 228 - 46
Sheldrick GM. Acta Crystallogr., Sect. A 1990, 46: 467 - 47 SHELXL-97:
Sheldrick GM. Acta Crystallogr., Sect. A 2008, 64: 112
References
Within a dynamic thermodynamic resolution: ΔΔG = RT˙ln(e.r.), ΔΔE ≈ ΔΔH(0 K) ≈ ΔΔG = ΔΔH - TΔΔS.
32X-ray crystal structure analysis for (R)-20f: formula C21H24BrNO3, M = 418.32, colorless crystals 0.30 × 0.30 × 0.15 mm, a = 5.774(1), b = 17.816(1), c = 19.291(1) Å, V = 1984.5(4) ų, ρcalcd = 1.400 g cm-³, µ = 29.81 cm-¹, empirical absorption correction (0.468 ≤ T ≤ 0.663), Z = 4, orthorhombic, space group P212121 (No. 19), λ = 1.54178 Å, T = 223 K, ω and ϕ scans, 9441 reflections collected (±h, ±k, ±l), [(sinθ)/λ] = 0.60 Å-¹, 3384 independent (R int = 0.034) and 3338 observed reflections [I ≤ 2 σ(I)], 239 refined parameters, R = 0.028, R w ² = 0.074, Flack parameter -0.021(15), max. residual electron density 0.28 (-0.24) e Å-³, hydrogen atoms calculated and refined as riding atoms, CCDC 684786.
36All the bis(oxazoline) 9d containing complexes calculated show values for this sum of angles between 314˚ [(R C)-33˙9d] and 316˚ [(R C)-32˙9d] for the favored R C-configured epimers and values around 312˚ to 313˚ for the unfavored S C-configured epimers.
37X-ray crystal structure analysis for (S,S)-29: formula C21H29NO2Si, M = 355.54, colorless crystals 0.25 × 0.06 × 0.05 mm, a = 22.666(1), b = 7.897(1), c = 12.669(1) Å, β = 108.45(1)˚, V = 2151.1(3) ų, ρcalcd = 1.0981 g cm-³, µ = 10.52 cm-¹, empirical absorption correction (0.779 ≤ T ≤ 0.949), Z = 4, monoclinic, space group C2 (No. 5), λ = 1.54178 Å, T = 223 K, ω and ϕ scans, 5904 reflections collected (±h, ±k, ±l), [(sinθ)/λ] = 0.59 Å-¹, 2448 independent (R int = 0.048) and 1962 observed reflections [I ≤ 2 σ(I)], 254 refined parameters, R = 0.052, R w ² = 0.122, Flack parameter 0.02 (6), max. residual electron density 0.17 (-0.23) e Å-³, hydrogen atoms calculated and refined as riding atoms, CCDC 684785.
40Tables containing the atom coordinates of the different complexes can be obtained from the author upon request.
48SCHAKAL: Keller, E. University of Freiburg, Germany, 1997
49These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/data request/cif.