Semin Reprod Med 2008; 26(2): 143-152
DOI: 10.1055/s-2008-1042953
© Thieme Medical Publishers

Epigenetics and Assisted Reproductive Technologies: Human Imprinting Syndromes

Laura T. Lawrence1 , 3 , Kelle H. Moley1 , 2 , 3
  • 1Fellow in Reproductive Endocrinology and Infertility, Washington University in St. Louis, St. Louis, Missouri
  • 2Professor of Obstetrics and Gynecology, Professor of Cell Biology and Physiology, Vice Chair of Research, Washington University in St. Louis, St. Louis, Missouri
  • 3Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, Missouri
Further Information

Publication History

Publication Date:
27 February 2008 (online)

ABSTRACT

With the rise in use of assisted reproductive technologies (ARTs), there has been an increased awareness of potential genetic problems that may be initiated or propagated using these techniques. Several population studies have suggested a small but significantly increased risk of imprinting disorders like Angelman syndrome, Beckwith-Wiedemann syndrome, and possibly transient neonatal diabetes in children born through ARTs. Although the absolute risk appears to be very small, this association logically leads to the question of how ARTs affect gene imprinting. Studies investigating culture medias, timing of embryo transfer, intracytoplasmic sperm injection, and type of infertility have not yielded an association. There is evidence that the period of gamete development and the period during which imprinted genes must maintain methylation are vulnerable points at which errors may occur. Further evidence linking aberrant methylation to subfertility and superovulation make epigenetics and ARTs an area that requires additional research.

REFERENCES

  • 1 Behboodi E, Anderson G B et al.. Birth of large calves that developed from in vitro-derived bovine embryos.  Theriogenology. 1995;  44 227-232
  • 2 Farin P W, Farin C E. Transfer of bovine embryos produced in vivo or in vitro: survival and fetal development.  Biol Reprod. 1995;  52 676-682
  • 3 Kruip T AM, den Daas J HG. In vitro produced and cloned embryos: effects on pregnancy, parturition and offspring.  Theriogenology. 1997;  47 43-52
  • 4 van Wagtendonk-de Leeuw A M, Aerts B J, den Daas J H. Abnormal offspring following in vitro production of bovine preimplantation embryos: a field study.  Theriogenology. 1998;  49 883-894
  • 5 van Wagtendonk-de Leeuw A M, Mullaart E, de Roos A P et al.. Effects of different reproduction techniques: AI MOET or IVP, on health and welfare of bovine offspring.  Theriogenology. 2000;  53 575-597
  • 6 Bertolini M, Mason J B, Beam S W et al.. Morphology and morphometry of in vivo- and in vitro-produced bovine concepti from early pregnancy to term and association with high birth weights.  Theriogenology. 2002;  58 973-994
  • 7 Young L E, Sinclair K D, Wilmut I. Large offspring syndrome in cattle and sheep.  Rev Reprod. 1998;  3 155-163
  • 8 Buiting K, Lich C, Cottrell S, Barnicoat A, Horsthemke B. A 5-kb imprinting center deletion in a family with Angelman syndrome reduces the shortest region of deletion overlap to 880 bp.  Hum Genet. 1999;  105 665-666
  • 9 Manning M, Lissens W, Bonduelle M et al.. Study of DNA-methylation patterns at chromosome 15q11-q13 in children born after ICSI reveals no imprinting defects.  Mol Hum Reprod. 2000;  6 1049-1053
  • 10 Sutcliffe A G, Taylor B, Saunders K, Thornton S, Lieberman B A, Grudzinskas J G. Outcome in the second year of life after in-vitro fertilisation by intracytoplasmic sperm injection: a UK case-control study.  Lancet. 2001;  357 2080-2084
  • 11 Cox G F, Burger J, Lip V et al.. Intracytoplasmic sperm injection may increase the risk of imprinting defects.  Am J Hum Genet. 2002;  71 162-164
  • 12 Orstavik K H, Eiklid K, van der Hagen C B et al.. Another case of imprinting defect in a girl with Angelman syndrome who was conceived by intracytoplasmic semen injection.  Am J Hum Genet. 2003;  72 218-219
  • 13 Doornbos M E, Maas S M, McDonnell J, Vermeiden J P, Hennekam R C. Infertility, assisted reproduction technologies and imprinting disturbances: a Dutch study.  Hum Reprod. 2007;  22 2476-2480
  • 14 Gicquel C, Gaston V, Mandelbaum J, Siffroi J P, Flahault A, Le Bouc Y. In vitro fertilization may increase the risk of Beckwith-Wiedemann syndrome related to the abnormal imprinting of the KCN1OT gene.  Am J Hum Genet. 2003;  72 1338-1341
  • 15 Olivennes F, Mannaerts B, Struijs M, Bonduelle M, Devroey P. Perinatal outcome of pregnancy after GnRH antagonist (ganirelix) treatment during ovarian stimulation for conventional IVF or ICSI: a preliminary report.  Hum Reprod. 2001;  16 1588-1591
  • 16 Maher E R, Brueton L A, Bowdin S C et al.. Beckwith-Wiedemann syndrome and assisted reproduction technology (ART).  J Med Genet. 2003;  40 62-64
  • 17 DeBaun M R, Niemitz E L, Feinberg A P. Association of in vitro fertilization with Beckwith-Wiedemann syndrome and epigenetic alterations of LIT1 and H19.  Am J Hum Genet. 2003;  72 156-160
  • 18 Chang A S, Moley K H, Wangler M, Feinberg A P, Debaun M R. Association between Beckwith-Wiedemann syndrome and assisted reproductive technology: a case series of 19 patients.  Fertil Steril. 2005;  83 349-354
  • 19 Sutcliffe A G, Peters C J, Bowdin S et al.. Assisted reproductive therapies and imprinting disorders-a preliminary British survey.  Hum Reprod. 2006;  21 1009-1011
  • 20 Butler J V, Whittington J E, Holland A J, Boer H, Clarke D, Webb T. Prevalence of, and risk factors for, physical ill-health in people with Prader-Willi syndrome: a population-based study.  Dev Med Child Neurol. 2002;  44 248-255
  • 21 Whittington J E, Holland A J, Webb T, Butler J, Clarke D, Boer H. Population prevalence and estimated birth incidence and mortality rate for people with Prader-Willi syndrome in one UK Health Region.  J Med Genet. 2001;  38 792-798
  • 22 Kallen B, Finnstrom O, Nygren K G, Olausson P O. In vitro fertilization (IVF) in Sweden: risk for congenital malformations after different IVF methods.  Birth Defects Res A Clin Mol Teratol. 2005;  73 162-169
  • 23 Perkins R M, Hoang-Xuan M T. The Russell-Silver syndrome: a case report and brief review of the literature.  Pediatr Dermatol. 2002;  19 546-549
  • 24 Shield J P. Neonatal diabetes: new insights into aetiology and implications.  Horm Res. 2000;  53(Suppl 1) 7-11
  • 25 Iguchi-Ariga S M, Schaffner W. CpG methylation of the cAMP-responsive enhancer/promoter sequence TGACGTCA abolishes specific factor binding as well as transcriptional activation.  Genes Dev. 1989;  3 612-619
  • 26 Bird A P, Wolffe A P. Methylation-induced repression-belts, braces, and chromatin.  Cell. 1999;  99 451-454
  • 27 Engel J R, Smallwood A, Harper A et al.. Epigenotype-phenotype correlations in Beckwith-Wiedemann syndrome.  J Med Genet. 2000;  37 921-926
  • 28 Wang Q, Yin S, Ai J S et al.. Histone deacetylation is required for orderly meiosis.  Cell Cycle. 2006;  5 766-774
  • 29 Young L E, Fernandes K, McEvoy T G et al.. Epigenetic change in IGF2R is associated with fetal overgrowth after sheep embryo culture.  Nat Genet. 2001;  27 153-154
  • 30 Weksberg R, Shuman C, Smith A C. Beckwith-Wiedemann syndrome.  Am J Med Genet C Semin Med Genet. 2005;  137 12-23
  • 31 Hao Y, Crenshaw T, Moulton T, Newcomb E, Tycko B. Tumour-suppressor activity of H19 RNA.  Nature. 1993;  365 764-767
  • 32 Algar E M, St Heaps L, Darmanian A et al.. Paternally inherited submicroscopic duplication at 11p15.5 implicates insulin-like growth factor II in overgrowth and Wilms' tumorigenesis.  Cancer Res. 2007;  67 2360-2365
  • 33 Sparago A, Russo S, Cerrato F et al.. Mechanisms causing imprinting defects in familial Beckwith-Wiedemann syndrome with Wilms' tumour.  Hum Mol Genet. 2007;  16 254-264
  • 34 Ping A J, Reeve A E, Law D J, Young M R, Boehnke M, Feinberg A P. Genetic linkage of Beckwith-Wiedemann syndrome to 11p15.  Am J Hum Genet. 1989;  44 720-723
  • 35 Zemel S, Bartolomei M S, Tilghman S M. Physical linkage of two mammalian imprinted genes, H19 and insulin-like growth factor 2.  Nat Genet. 1992;  2 61-65
  • 36 Zhang Y, Tycko B. Monoallelic expression of the human H19 gene.  Nat Genet. 1992;  1 40-44
  • 37 Weksberg R, Shuman C, Caluseriu O et al.. Discordant KCNQ1OT1 imprinting in sets of monozygotic twins discordant for Beckwith-Wiedemann syndrome.  Hum Mol Genet. 2002;  11 1317-1325
  • 38 Hark A T, Schoenherr C J, Katz D J, Ingram R S, Levorse J M, Tilghman S M. CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus.  Nature. 2000;  405 486-489
  • 39 Kantor B, Shemer R, Razin A. The Prader-Willi/Angelman imprinted domain and its control center.  Cytogenet Genome Res. 2006;  113 300-305
  • 40 Ohta T, Gray T A, Rogan P K et al.. Imprinting-mutation mechanisms in Prader-Willi syndrome.  Am J Hum Genet. 1999;  64 397-413
  • 41 Szabo P E, Mann J R. Biallelic expression of imprinted genes in the mouse germ line: implications for erasure, establishment, and mechanisms of genomic imprinting.  Genes Dev. 1995;  9 1857-1868
  • 42 Hajkova P, Erhardt S, Lane N et al.. Epigenetic reprogramming in mouse primordial germ cells.  Mech Dev. 2002;  117 15-23
  • 43 Tam P P, Zhou S X, Tan S S. X-chromosome activity of the mouse primordial germ cells revealed by the expression of an X-linked lacZ transgene.  Development. 1994;  120 2925-2932
  • 44 Obata Y, Kono T. Maternal primary imprinting is established at a specific time for each gene throughout oocyte growth.  J Biol Chem. 2002;  277 5285-5289
  • 45 Sato A, Otsu E, Negishi H, Utsunomiya T, Arima T. Aberrant DNA methylation of imprinted loci in superovulated oocytes.  Hum Reprod. 2007;  22 26-35
  • 46 El-Maarri O, Buiting K, Peery E G et al.. Maternal methylation imprints on human chromosome 15 are established during or after fertilization.  Nat Genet. 2001;  27 341-344
  • 47 Geuns E, Hilven P, Van Steirteghem A, Liebaers I, De Rycke M. Methylation analysis of KvDMR1 in human oocytes.  J Med Genet. 2007;  44 144-147
  • 48 Olek A, Walter J. The pre-implantation ontogeny of the H19 methylation imprint.  Nat Genet. 1997;  17 275-276
  • 49 Marques C J, Carvalho F, Sousa M, Barros A. Genomic imprinting in disruptive spermatogenesis.  Lancet. 2004;  363 1700-1702
  • 50 Kerjean A, Dupont J M, Vasseur C et al.. Establishment of the paternal methylation imprint of the human H19 and MEST/PEG1 genes during spermatogenesis.  Hum Mol Genet. 2000;  9 2183-2187
  • 51 Manning M, Lissens W, Weidner W, Liebaers I. DNA methylation analysis in immature testicular sperm cells at different developmental stages.  Urol Int. 2001;  67 151-155
  • 52 Allen C, Reardon W. Assisted reproduction technology and defects of genomic imprinting.  BJOG. 2005;  112 1589-1594
  • 53 Swales A K, Spears N. Genomic imprinting and reproduction.  Reproduction. 2005;  130 389-399
  • 54 Tang L Y, Reddy M N, Rasheva V et al.. The eukaryotic DNMT2 genes encode a new class of cytosine-5 DNA methyltransferases.  J Biol Chem. 2003;  278 33613-33616
  • 55 Yoder J A, Soman N S, Verdine G L, Bestor T H. DNA (cytosine-5)-methyltransferases in mouse cells and tissues. Studies with a mechanism-based probe.  J Mol Biol. 1997;  270 385-395
  • 56 Hata K, Okano M, Lei H, Li E. Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice.  Development. 2002;  129 1983-1993
  • 57 Li E, Beard C, Jaenisch R. Role for DNA methylation in genomic imprinting.  Nature. 1993;  366 362-365
  • 58 Li E, Bestor T H, Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality.  Cell. 1992;  69 915-926
  • 59 Bestor T H. Cytosine methylation and the unequal developmental potentials of the oocyte and sperm genomes.  Am J Hum Genet. 1998;  62 1269-1273
  • 60 Jue K, Bestor T H, Trasler J M. Regulated synthesis and localization of DNA methyltransferase during spermatogenesis.  Biol Reprod. 1995;  53 561-569
  • 61 Thompson J G, Gardner D K, Pugh P A, McMillan W H, Tervit H R. Lamb birth weight is affected by culture system utilized during in vitro pre-elongation development of ovine embryos.  Biol Reprod. 1995;  53 1385-1391
  • 62 Doherty A S, Mann M R, Tremblay K D, Bartolomei M S, Schultz R M. Differential effects of culture on imprinted H19 expression in the preimplantation mouse embryo.  Biol Reprod. 2000;  62 1526-1535
  • 63 Khosla S, Dean W, Brown D, Reik W, Feil R. Culture of preimplantation mouse embryos affects fetal development and the expression of imprinted genes.  Biol Reprod. 2001;  64 918-926
  • 64 Ludwig M, Katalinic A, Gross S, Sutcliffe A, Varon R, Horsthemke B. Increased prevalence of imprinting defects in patients with Angelman syndrome born to subfertile couples.  J Med Genet. 2005;  42 289-291
  • 65 Hartmann S, Bergmann M, Bohle R M, Weidner W, Steger K. Genetic imprinting during impaired spermatogenesis.  Mol Hum Reprod. 2006;  12 407-411
  • 66 Bestor T H, Tycko B. Creation of genomic methylation patterns.  Nat Genet. 1996;  12 363-367
  • 67 Willadsen S M, Janzen R E, McAlister R J, Shea B F, Hamilton G, McDermand D. The viability of late morulae and blastocysts produced by nuclear transplantation in cattle.  Theriogenology. 1991;  35 161-170

Laura T LawrenceM.D. 

Department of Obstetrics and Gynecology, Washington University in St. Louis

4444 Forest Park Avenue, Suite 3100, St. Louis, MO 63108

Email: tsienl@wudosis.wustl.edu

    >