Abstract
A variety of oxime mesitylenesulfonates, generated in situ from their heterocyclic,
carbocyclic, and acyclic ketoximes in the presence of lithium hydroxide in tetrahydrofuran,
efficiently rearrange into their corresponding lactams and amides. The stereochemistry
of diazepan-5-one lactams resulting from the rearrangement of heterocyclic ketoximes
(piperidin-4-one oximes), has been deduced based on one- and two-dimensional NMR analyses.
The seven-membered heterocyclic ring of the product lactams adopts chair conformations
with equatorial configurations of all the alkyl and aryl substituents except one of
the methyl groups at C-3 on a 3,3-disubstituted product, which possess an axial configuration.
Key words
piperidin-4-one oximes - ketoximes - mesitylenesulfonyl chloride - Beckmann rearrangement
- diazepan-5-ones - lactams - amides
References
<A NAME="RF22407SS-1A">1a </A>
Gawley RE.
Org. React.
1988,
35:
1
<A NAME="RF22407SS-1B">1b </A>
Donaruma LG.
Heldt WZ.
Org. React.
1960,
11:
1
<A NAME="RF22407SS-2">2 </A>
Arisawa M.
Yamaguchi M.
Org. Lett.
2001,
3:
311
<A NAME="RF22407SS-3A">3a </A>
De Luca L.
Giacomelli G.
Porcheddu A.
J. Org. Chem.
2002,
67:
6272
<A NAME="RF22407SS-3B">3b </A>
Furuya Y.
Ishihara K.
Yamamoto H.
J. Am. Chem. Soc.
2005,
127:
11240
<A NAME="RF22407SS-4A">4a </A>
Chandrasekhar S.
Gopalaiah K.
Tetrahedron Lett.
2002,
43:
2455
<A NAME="RF22407SS-4B">4b </A>
Dongare MK.
Bhagwat VV.
Ramana CV.
Gurjar MK.
Tetrahedron Lett.
2004,
45:
4759
<A NAME="RF22407SS-4C">4c </A>
Wang B.
Gu Y.
Luo C.
Yang T.
Yang L.
Suo L.
Tetrahedron Lett.
2004,
45:
3369
<A NAME="RF22407SS-4D">4d </A>
Li D.
Shi F.
Guo S.
Deng Y.
Tetrahedron Lett.
2005,
46:
671
<A NAME="RF22407SS-4E">4e </A>
Kusama H.
Yamashita Y.
Narasaka K.
Bull. Chem. Soc. Jpn.
1995,
68:
373
<A NAME="RF22407SS-4F">4f </A>
Narasaka K.
Kitamura M.
Eur. J. Org. Chem.
2005,
4505 ; and references cited therein
<A NAME="RF22407SS-5A">5a </A>
Ikushima Y.
Hatakeda K.
Sato O.
Yokoyama T.
Arai M.
Angew. Chem. Int. Ed.
1999,
38:
2910
<A NAME="RF22407SS-5B">5b </A>
Ikushima Y.
Hatakeda K.
Sato M.
Sato O.
Arai M.
Chem. Commun.
2002,
19:
2208
<A NAME="RF22407SS-5C">5c </A>
Boero M.
Ikeshoji T.
Liew CC.
Terakura K.
Parrinello M.
J. Am. Chem. Soc.
2004,
126:
6280
<A NAME="RF22407SS-6A">6a </A>
Guo S.
Deng Y.
Catal. Commun.
2005,
6:
225
<A NAME="RF22407SS-6B">6b </A>
Guo S.
Du Z.
Zhang S.
Li D.
Li Z.
Deng Y.
Green Chem.
2006,
8:
296
<A NAME="RF22407SS-7A">7a </A>
Forni L.
Fornasari G.
Giordano G.
Lucarelli C.
Katovic A.
Trifiro F.
Perri C.
Nagy JB.
Phys. Chem. Chem. Phys.
2004,
6:
1842
<A NAME="RF22407SS-7B">7b </A>
Ghiaci M.
Abbaspur A.
Kalbasi R.
Appl. Catal., A
2005,
287:
83
<A NAME="RF22407SS-8">8 </A>
Ramalingan C.
Park Y.-T.
J. Org. Chem.
2007,
72:
4536
<A NAME="RF22407SS-9A">9a </A>
Kelly TA.
McNeil DW.
Rose JM.
David E.
Shih CK.
Grob PM.
J. Med. Chem.
1997,
40:
2430
<A NAME="RF22407SS-9B">9b </A>
Tucker H.
Le Count DJ.
Comprehensive Heterocyclic Chemistry II
Vol. 9:
Newkome GR.
Elsevier;
Oxford:
1996.
p.151 and 1039
<A NAME="RF22407SS-9C">9c </A>
Thurston DE.
Molecular Aspects of Anticancer Drug-DNA Interactions
The Macmillan Press Ltd.;
London:
1993.
p.54
<A NAME="RF22407SS-9D">9d </A>
Thurston DE.
Bose DS.
Chem. Rev.
1994,
94:
433
<A NAME="RF22407SS-10">10 </A>
Ramalingan C.
Park Y.-T.
Kabilan S.
Eur. J. Med. Chem.
2006,
41:
683 ; and references cited therein
<A NAME="RF22407SS-11">11 </A>
The E -oxime 1a adopts classical chair-conformation with equatorial orientations of the phenyl groups
on C-2 and C-6, and the methyl group on C-3. Key evidence for the orientation of the
hydroxyl group of the oxime being anti (E ) to C-3 is the unusual downfield absorption of the equatorial proton on C-5 compared
to the absorptions of the protons on C-2 and C-6 in the 1 H NMR spectrum, due to the 1,3-spatial proximity effect between the equatorial proton
on C-5 and the oxygen of the oxime (Refer to references 10 and 12 for more details).
<A NAME="RF22407SS-12">12 </A>
Cope AC.
Cotter RJ.
Roller GG.
J. Am. Chem. Soc.
1955,
77:
3590
<A NAME="RF22407SS-13A">13a </A>
Abraham RJ.
Fisher J.
Loftus P.
Introduction to NMR Spectroscopy
John Wiley;
New York:
1988.
p.45
<A NAME="RF22407SS-13B">13b </A>
Cooper JW.
Spectroscopic Techniques for Organic Chemists
John Wiley;
New York:
1980.
p.45
<A NAME="RF22407SS-14A">14a </A>
Katritzky AR.
Advances in Heterocyclic Chemistry
Vol. 36:
Academic Press;
New York:
1984.
p.42
<A NAME="RF22407SS-14B">14b </A>
Trager WF.
Lee CM.
Beckett AH.
Tetrahedron
1967,
23:
365
<A NAME="RF22407SS-14C">14c </A>
Wiewiorowski M.
Skolik J.
Krueger PJ.
Tetrahedron
1968,
24:
5439
<A NAME="RF22407SS-15">15 </A>
Tamura Y.
Fujiwara H.
Sumoto K.
Ikeda M.
Kita Y.
Synthesis
1973,
215
<A NAME="RF22407SS-16">16 </A>
Cristau HJ.
Cellier PP.
Spindler JF.
Taillefer M.
Chem. Eur. J.
2004,
10:
5607
<A NAME="RF22407SS-17">17 </A>
Young CG.
Pauline R.
Jenny J.
Christian M.
Carsten B.
Org. Lett.
2004,
6:
3293
<A NAME="RF22407SS-18">18 </A>
Chretien JM.
Zammattio F.
Le Grognec E.
Paris M.
Cahingt B.
Montavon G.
Quintard JP.
J. Org. Chem.
2005,
70:
2870
<A NAME="RF22407SS-19">19 </A>
Wan X.
Ma Z.
Li B.
Zhang K.
Cao S.
Zhang S.
Shi Z.
J. Am. Chem. Soc.
2006,
128:
7416
<A NAME="RF22407SS-20">20 </A>
Larock RC.
Yum EK.
Refvik MD.
J. Org. Chem.
1998,
63:
7652
<A NAME="RF22407SS-21">21 </A>
1 H NMR spectra were compared to those obtained from corresponding authentic samples.
<A NAME="RF22407SS-22">22 </A>
Matallana A.
Kruger AW.
Kingsbury CA.
J. Org. Chem.
1994,
59:
3020