Subscribe to RSS
DOI: 10.1055/s-2008-1038096
Immunologie der Tuberkulose und Entwicklungsstand neuer Impfstoffe
Immunology of Tuberculosis and Current Status of Vaccine DevelopmentPublication History
Publication Date:
05 March 2008 (online)

Zusammenfassung
Auch 125 Jahre nach der Entdeckung des Tuberkuloseerregers Mycobacterium tuberculosis durch Robert Koch stellt die Tuberkulose weltweit ein Gesundheitsproblem dar, das die WHO als global emergency, als globalen Notfall, einstuft. Eine hohe Durchseuchungsrate mit M. tuberculosis, das im Wirtsorganismus so lange persistiert, bis ihm ein geschwächtes Abwehrsystem die Gelegenheit zur Ausbreitung bietet, und eine aufwendige und kostenintensive Chemotherapie machen die Entwicklung eines geeigneten Impfstoffs dringend erforderlich. Hinzu kommen steigende Raten an multiresistenter Tuberkulose, v. a. in den Nachfolgestaaten der Sowjetunion und in China. Da seit Jahrzehnten kein neues Tuberkulosemedikament mehr zugelassen wurde, um dieser Entwicklung wirksam zu begegnen, besteht auch hier ein enormer Nachholbedarf. Im Folgenden wird die Immunabwehr bei der Tuberkulose vorgestellt, aus der sich verschiedene Strategien und Ansatzpunkte zur Impfstoffentwicklung ergeben und die zu einem besseren Verständnis der Infektionserkrankung Tuberkulose und ihrer Besonderheiten dienen soll. Die Entwicklung neuer Impfstoffkandidaten ist auf einem guten Weg. Dank internationaler Förderung stehen einige Kandidaten bereits kurz vor der klinischen Testung.
Abstract
Even 125 year after the discovery of Mycobacterium tuberculosis as the aetiological agent of tuberculosis by Robert Koch, tuberculosis is still a global health emergency according to WHO. The high infection rate with M. tuberculosis that persists in the human host until a weakened host immune system allows a reactivation and complicated and expensive antituberculous chemotherapy urgently demand the development of new vaccines. Increasing numbers of multidrug-resistant tuberculosis, especially in the successor states of the former Soviet Union and China, further complicate an efficient tuberculosis control. For decades, there was no new release of an antituberculous drug to efficiently fight tuberculosis. Hence, also drug development has to keep up with the development of resistance by the pathogen. The following review describes the immune response to M. tuberculosis infection and the deduction of strategies for novel vaccines. Thanks to international financial support, several new vaccine candidates are already in the pipeline and close to clinical testing phases.
Literatur
- 1 WHO .Tuberculosis Report 2007. Global tuberculosis control - surveillance, planning, financing
- WHO report on tuberculosis 2007. http://www.who.int/tb/publications/global_report/en/; published March 19, 2007 (zuletzt
abgerufen: Oktober 2007)
MissingFormLabel
- 2 WHO .Berlin Declaration 2007. http://www.euro.who.int/tuberculosis/TBForum/20 070 926_1 (zuletzt abgerufen: Oktober
2007)
MissingFormLabel
- 3
Armstrong J A, Hart P D.
Phagosome-lysosome interactions in cultured macrophages infected with virulent tubercle
bacilli. Reversal of the usual nonfusion pattern and observations on bacterial survical.
J Exp Med.
1975;
142
1-16
MissingFormLabel
- 4
Le C V, Cols C, Maridonneau-Parini I.
Nonopsonic phagocytosis of zymonsan and Mycobacterium kansasii by CR3 (CD11b/CD18) involves distinct molecular determinants and is or is not coupled
with NADPH oxidase activation.
Infect Immun.
2000;
68
4736-4745
MissingFormLabel
- 5
Kaufmann S H.
How can immunology contribute to the control of tuberculosis?.
Nat Rev Immunol.
2001;
1
20-30
MissingFormLabel
- 6
Flynn J L.
Immunology of tuberculosis and implications in vaccine development.
Tuberculosis.
2004;
84
93-101
MissingFormLabel
- 7
Ulrichs T, Kaufmann S H.
[Immunology of tuberculosis: impact on the development of novel vaccines].
Internist.
2003;
44
1374-1384
MissingFormLabel
- 8
Boros D L.
Granulomatous inflammations.
Prog Allergy.
1978;
24
183-267
MissingFormLabel
- 9
Ulrichs T, Kosmiadi G A, Trusov V. et al .
Human tuberculous granulomas induce peripheral lymphoid follicle-like structures to
orchestrate local host defence in the lung.
J Pathol.
2004;
204
217-228
MissingFormLabel
- 10
Ulrichs T, Kosmiadi G A, Jorg S. et al .
Differential Organization of the Local Immune Response in Patients with Active Cavitary
Tuberculosis or with Nonprogressive Tuberculoma.
J Infect Dis.
2005;
192
89-97
MissingFormLabel
- 11
Cole S T, Brosch R, Parkhill J. et al .
Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence.
Nature.
1998;
393
537-544
MissingFormLabel
- 12
Glickman M S, Cox J S, Jacobs W R.
A novel mycolic acid cyclopropane synthetase is required for coding, persistence,
and virulence of Mycobacterium tuberculosis.
Mol Cell.
2000;
5
717-727
MissingFormLabel
- 13
Ando M, Yoshimatsu T, Ko C. et al .
Deletion of Mycobacterium tuberculosis sigma factor E results in delayed time to death with bacterial persistence in the
lungs of aerosol-infected mice.
Infect Immun.
2003;
71
7170-7172
MissingFormLabel
- 14
Ramakrishnan L, Federspiel N A, Falkow S.
Granuloma-specific expression of Mycobacterium virulence proteins from the glycine-rich
PE-PGRS family.
Science.
2000;
288
1436-1439
MissingFormLabel
- 15
Kaplan G, Post F A, Moreira A L. et al .
Mycobacterium tuberculosis growth at the cavity surface: a microenvironment with failed immunity.
Infect Immun.
2003;
71
7099-7108
MissingFormLabel
- 16
Pai M, Riley L W, Colford Jr J M.
Interferon-gamma assays in the immunodiagnosis of tuberculosis: a systematic review.
Lancet Infect Dis.
2004;
4
761-776
MissingFormLabel
- 17
Ulrichs T, Kaufmann S H.
Mycobacterial persistence and immunity.
Front Biosci.
2002;
7
D458-D469
MissingFormLabel
- 18
Stead W W.
Pathogenesis of a first episode of chronic pulmonary tuberculosis in man: recrudescence
of residuals of the primary infection or exogenous reinfection?.
Am Rev Respir Dis.
1967;
95
729-745
MissingFormLabel
- 19
Rie A van, Warren R, Richardson M. et al .
Exogenous reinfection as a cause of recurrent tuberculosis after curative treatment.
N Engl J Med.
1999;
341
1174-1179
MissingFormLabel
- 20
Fine P E.
The BCG story: lessons from the past and implications for the future.
Rev Infect Dis.
1989;
11 Suppl 2
S353-S359
MissingFormLabel
- 21
Colditz G A, Brewer T F, Berkey C S. et al .
Efficacy of BCG vaccine in the prevention of tuberculosis. Meta-analysis of the published
literature.
JAMA.
1994;
271
698-702
MissingFormLabel
- 22
Kaufmann S H, McMichael A J.
Annulling a dangerous liaison: vaccination strategies against AIDS and tuberculosis.
Nat Med.
2005;
11 (4 Suppl)
S33-S44
MissingFormLabel
- 23
Kaufmann S H.
The contribution of immunology to the rational design of novel antibacterial vaccines.
Nat Rev Microbiol.
2007;
5
491-504
MissingFormLabel
- 24
Grode L, Seiler P, Baumann S. et al .
Increased vaccine efficacy against tuberculosis of recombinant Mycobacterium bovis
bacille Calmette-Guérin mutants that secrete listeriolysin.
J Clin Invest.
2005;
115
2472-2479
MissingFormLabel
Dr. med. Timo Ulrichs
Leiter der Sektion Tuberkulose, Koch-Metschnikow-Forum, Langenbeck-Virchow-Haus
Luisenstr. 59
10117 Berlin
Email: timo.ulrichs@bmg.bund.de