Abstract
Piptadenia pervillei Vatke (Fabaceae) was selected from a screening programme devoted to the search of
naturally-occuring antimalarial compounds from plants of Madagascar. Bioassay-guided
fractionation of the ethyl acetate extract of the leaves led to the isolation of four
phenolic compounds, (+)-catechin (1 ), (+)-catechin 5-gallate (2 ), (+)-catechin 3-gallate (3) and ethyl gallate (4 ). Structures were determined by NMR and mass spectroscopy. Compounds 2 and 3 displayed the highest in vitro activity against the chloroquine-resistant strain FcB1 of Plasmodium falciparum with IC50 values of 1.2 μM and 1.0 μM, respectively, and no significant cytotoxicity against
the human embryonic lung cells MRC-5 was measured (IC50 values > 75 μM). Five analogues (5 - 9 ) of (+)-catechin 5-gallate (2 ) were synthesized and evaluated for their antiplasmodial activity.
Key words
Piptadenia pervillei
- Fabaceae - antiplasmodial activity - (+)-catechin gallate
References
1
Hyde J E.
Mechanisms of resistance of Plasmodium falciparum to antimalarial drugs.
Microbes Infect.
2002;
4
165-74
2
Brinner K M, Kim J M, Habashita H, Gluzman I Y, Goldberg D E, Ellman J A.
Novel and potent antimalarial agents.
Bioorg Med Chem.
2001;
10
3649-61
3
Sullivan D J.
Theories on malaria pigment formation and quinoline action.
Int J Parasitol.
2002;
32
1645-53
4
Fitch C D.
Ferriprotoporphyrin IX, phospholipids, and the antimalarial actions of quinoline drugs.
Life Sci.
2004;
74
1957-72
5
Rasoanaivo P, Ramanitrahasimbola D, Rafatro H, Rakotondramanana D, Robijaona B, Rakotozafy A.
et al .
Screening extracts of Madagascan plants in search of antiplasmodial compounds.
Phytother Res.
2004;
18
742-7
6 Villiers J F. Subfamily mimosoideae. In: Du Puy DJ, editor
The Leguminosae of Madagascar. Kew; Royal Botanical Gardens 2002: 154-293
7
Zelle R E, McClellan W J.
A simple, high-yielding method for the methylenation of catechols.
Tetrahedron Lett.
1991;
32
2461-4
8 Cren-Olivé C, Lebrun S, Rolando C. An efficient synthesis of the four mono methylated
isomers of (+)-catechin including the major metabolites and of some dimethylated and
trimethylated analogues through selective protection of the catechol ring. J Chem
Soc Perkin Trans I 2002: 821-30
9
Tückmantel W, Kozikowski A P, Romanczyk L J.
Studies in polyphenol chemistry and bioactivity. 1. Preparation of building blocks
from (+)-catechin. Procyanidin formation. Synthesis of the cancer cell growth inhibitor,
3-O -galloyl-(2R,3R )-epicatechin 4β,8-[3-O -galloyl-(2R,3R )-epicatechin].
J Am Chem Soc.
1999;
121
12 073-81
10
Frappier F, Jossang A, Soudon J, Calvo F, Rasoanaivo P, Ratsimamanga-Urverg S. et
al .
Bisbenzylisoquinolines as modulators of chloroquine resistance in Plasmodium falciparum and multidrug resistance in tumor cells.
Antimicrob Agents Chemother.
1996;
40
1476-81
11
Davies A L, Cai Y, Davies A P, Lewis J R.
1 H and 13 C NMR assignments of some green tea polyphenols.
Magn Reson Chem.
1996;
34
887-90
12
Tanaka T, Nonaka G I, Nishioka I.
7-O -Galloyl-(+)-catechin and 3-O -Galloylprocyanidin B-3 from Sanguisorba officinalis.
.
Phytochemistry.
1983;
22
2575-8
13
Malan E.
Derivatives of (+)-catechin-5-gallate from the bark of Acacia nilotica .
Phytochemistry.
1991;
30
2737-9
14
Calixto J B, Santos A RS, Cechinel V, Yunes R A.
A review of the plants of the genus Phyllanthus : their chemistry, pharmacology, and therapeutic potential.
Med Res Rev.
1998;
18
225-58
15
Jankun J, Selman S H, Swiercz R, Skrzypczak-Jankun E.
Why drinking green tea could prevent cancer.
Nature.
1997;
387
561
16
Fraga C G, Martino V S, Ferraro G E, Coussio J D, Boveris A.
Flavonoids as antioxidants evaluated by in vitro and in situ liver chemiluminescence.
Biochem Pharmacol.
1987;
36
717-20
17
Kayser O, Kiderlin A F, Croft S L.
Natural products as potential antiparasitic drugs. In: Atta-ur-Rahman, editor. Studies
in natural products chemistry. Bioactive natural products (Part G).
Amsterdam:.
Elsevier;
2002
26, 779-848
18
Paveto C, Güida M C, Esteva M I, Martino V, Coussio J, Flawià M M. et al .
Anti-Trypanosoma cruzi activity of Green tea (Camellia sinensis ) catechins.
Antimicrob Agents Chemother.
2004;
48
69-74
19
Kolodziej H, Kayser O, Kiderlen A F, Ito H, Hatano T, Yoshida T. et al .
Proanthocyanidins and related compounds: antileishmanial activity and modulatory effects
on nitric oxid and tumor necrosis factor-α-release in the murine macrophage-like cell
line RAW 264.
Biol Pharm Bull.
2001;
24
1016-21
20
Dickii J, Njifutie N, Foyere J A, Basco L , Ringwald P.
In vitro antimalarial activity of limonoids from Khaya grandifolia C.D.C. (Meliaceae).
J Ethnopharmacol.
2000;
60
27-33
21
Srivastava P, Chandra S, Arif A J, Singh C, Pandey V C.
Metal chelators/antioxidants: approaches to protect erythrocytic oxidative stress
injury during Plasmodium berghei infection in Mastomys coucha.
.
Pharmacol Res.
1999;
40
239-41
22
Tasdemir D, Lack G, Brun R, Rüedi P, Scapozza L, Perozzo R.
Inhibition of Plasmodium falciparum fatty acid biosynthesis: evaluation of FabG, FabZ, and FabI as drug targets for flavonoids.
J Med Chem.
2006;
49
3345-53
23
Sannella A R, Messori L, Casini A, Vincieri F F, Bilia A R, Majori G. et al .
Antimalarial properties of green tea.
Biochem Biophys Res Commun.
2007;
353
177-81
Dr. Lengo Mambu
USM 0502-UMR 5154
CNRS Chimie et Biochimie des Substances Naturelles
Département Régulations,
Développement et Diversité Moléculaire
Muséum National d’Histoire Naturelle
CP 54, 57 rue Cuvier
75231 Paris Cedex 05
France
Telefon: +33-1-4079-5607
Fax: +33-1-4079-3135
eMail: mambu@mnhn.fr