References and Notes
<A NAME="RD30307ST-1A">1a</A>
Fichera M.
Cruciani G.
Bianchi A.
Musumarra G.
J. Med. Chem.
2000,
43:
2300
<A NAME="RD30307ST-1B">1b</A>
Turner CE.
Elsohly MA.
Boeren EG.
J. Nat. Prod.
1980,
43:
169
See for example:
<A NAME="RD30307ST-2A">2a</A>
Keimowitz AR.
Martin BR.
Razdan RK.
Crocker PJ.
Mascarella SW.
Thomas BF.
J. Med. Chem.
2000,
43:
59
<A NAME="RD30307ST-2B">2b</A>
Howlett AC.
Barth F.
Bonner TI.
Cabral G.
Casellas P.
Devane WA.
Felder CC.
Herkenham M.
Mackie K.
Martin BR.
Pertwee RG.
Pharmacol. Rev.
2002,
54:
161
<A NAME="RD30307ST-2C">2c</A>
Salo OMH.
Raitio KH.
Savinainen JR.
Nevalainen T.
Lahtela-Kakkonen M.
Laitinen JT.
Järvinen T.
Poso A.
J. Med. Chem.
2005,
48:
7166
For some previous synthetic approaches to cannabinoids, see:
<A NAME="RD30307ST-3A">3a</A>
Papahatjis DP.
Kourouli T.
Abadji V.
Goutopoulos A.
Makriyannis A.
J. Med. Chem.
1998,
41:
1195
<A NAME="RD30307ST-3B">3b</A>
Papahatjis DP.
Nikas SP.
Kourorli T.
Chari R.
Xu W.
Pertwee RG.
Makriyannis A.
J. Med. Chem.
2003,
46:
3221
<A NAME="RD30307ST-3C">3c</A>
Sun H.
Mahadevan A.
Razdan RK.
Tetrahedron Lett.
2004,
45:
615
<A NAME="RD30307ST-3D">3d</A>
Chu C.
Ramamurthy A.
Makriyannis A.
Tius MA.
J. Org. Chem.
2003,
68:
55
<A NAME="RD30307ST-3E">3e</A>
Evans DA.
Barnes DM.
Johnson JS.
Lectka T.
von Matt P.
Miller SJ.
Murry JA.
Norcross RD.
Shaughnessy EA.
Campos KR.
J. Am. Chem. Soc.
1999,
121:
7582
<A NAME="RD30307ST-3F">3f</A>
Lesch B.
Toräng J.
Nieger M.
Bräse S.
Synthesis
2005,
1888
<A NAME="RD30307ST-3G">3g</A>
Nikas SP.
Thakur GA.
Parrish D.
Alapafuja SO.
Huestis MA.
Makriyannis A.
Tetrahedron
2007,
63:
8112
<A NAME="RD30307ST-4">4</A>
Mahadevan A.
Siegel C.
Martin BR.
Abood ME.
Beletskaya I.
Razdan RK.
J. Med. Chem.
2000,
43:
3778
For related addition reactions of phosphorus-centred radicals, see:
<A NAME="RD30307ST-5A">5a</A>
Jessop CM.
Parsons AF.
Routledge A.
Irvine DJ.
Eur. J. Org. Chem.
2006,
1547
<A NAME="RD30307ST-5B">5b</A>
Jessop CM.
Parsons AF.
Routledge A.
Irvine D.
Tetrahedron Lett.
2003,
44:
479
<A NAME="RD30307ST-5C">5c</A>
Jessop CM.
Parsons AF.
Routledge A.
Irvine DJ.
Tetrahedron Lett.
2004,
45:
5095
<A NAME="RD30307ST-5D">5d</A>
Cho DH.
Jang DO.
Synlett
2005,
59
<A NAME="RD30307ST-5E">5e</A>
Hunt TA.
Parsons AF.
Pratt R.
J. Org. Chem.
2006,
71:
3656
<A NAME="RD30307ST-5F">5f</A>
Montchamp J.-L.
J. Organomet. Chem.
2005,
690:
2388
<A NAME="RD30307ST-5G">5g</A>
Leca D.
Fensterbank L.
Lacôte E.
Malacria M.
Chem. Soc. Rev.
2005,
34:
858
<A NAME="RD30307ST-5H">5h</A>
Parsons AF.
Sharpe DJ.
Taylor P.
Synlett
2005,
2981
<A NAME="RD30307ST-5I">5i</A>
Hunt T.
Parsons AF.
Pratt R.
Synlett
2005,
2978
<A NAME="RD30307ST-5J">5j</A>
Healy MP.
Parsons AF.
Rawlinson JGT.
Org. Lett.
2005,
7:
1597
<A NAME="RD30307ST-5K">5k</A>
Carta P.
Puljic N.
Robert C.
Dhimane A.-L.
Fensterbank L.
Lacote E.
Malacria M.
Org. Lett.
2007,
9:
1061
For complementary 6-exo-trig radical cyclisation approaches to tetrahydropyrans, see:
<A NAME="RD30307ST-6A">6a</A>
Lee E.
Pure Appl. Chem.
2005,
77:
2073
<A NAME="RD30307ST-6B">6b</A>
Hiramatsu N.
Takahashi N.
Noyori R.
Mori Y.
Tetrahedron
2005,
61:
8589
<A NAME="RD30307ST-6C">6c</A>
Hartung J.
Gottwald T.
Tetrahedron Lett.
2004,
45:
5619
<A NAME="RD30307ST-6D">6d</A>
Evans PA.
Roseman JD.
Tetrahedron Lett.
1997,
38:
5249
<A NAME="RD30307ST-6E">6e</A>
Leeuwenburgh MA.
Litjens REJN.
Codée JDC.
Overkleeft HS.
van der Marel GA.
van Boom JH.
Org. Lett.
2000,
2:
1275
<A NAME="RD30307ST-6F">6f</A>
Burke SD.
Rancourt J.
J. Am. Chem. Soc.
1991,
113:
2335
<A NAME="RD30307ST-7">7</A>
All new compounds gave consistent spectral and high resolution mass spectroscopic
data.
See for example:
<A NAME="RD30307ST-8A">8a</A>
Journet M.
Lacôte E.
Malacria M.
J. Chem. Soc., Chem. Commun.
1994,
461
<A NAME="RD30307ST-8B">8b</A>
Maulide N.
Markov IE.
Chem. Commun.
2006,
1200
<A NAME="RD30307ST-9">9</A>
(
Z
)-1-(2-Methylpent-3-en-2-yloxy)-2-vinylbenzene (13a): yellow oil. IR (CDCl3): 3085, 3065, 2958, 2927, 1603, 1487, 1456, 1439, 1377, 1174, 1120 cm-1. 1H NMR (400 MHz, CDCl3): δ = 6.80-7.70 (m, 4 H, 4 × ArCH), 7.10 (dd, J = 17.5, 11.0 Hz, 1 H, CH=CHAHB), 5.72 (dd, J = 17.5 1.5 Hz, 1 H, CH=CH
AHB), 5.64 (dq, J = 12.0, 1.5 Hz, 1 H, CH=CHMe), 5.54 (dq, J = 12.0, 7.0 Hz, 1 H, CH=CHMe), 5.22 (dd, J = 11.0, 1.5 Hz, 1 H, CH=CHA
H
B), 1.70 (d, J = 7.0 Hz, 3 H, Me), 1.53 (s, 6 H, MeCMe). 13C NMR (100 MHz, CDCl3): δ = 153.5 (ArCO), 135.1, 132.0, 128.4, 127.4, 126.1, 120.7, 118.1 (4 × ArCH, CH=CHAHB, CH=CHMe), 128.6 (ArCCH=C), 113.7 (CH=CHAHB), 79.4 (MeCMe), 28.8 (MeCMe), 13.7 (CH=CHMe). MS (CI, NH3): m/z (%) = 203 (8) [MH+], 83 (100). HRMS (CI): m/z calcd for C14H19O [M + H+]: 203.1436; found: 203.1436.
<A NAME="RD30307ST-10">10</A>
Synthesis of
O
,
O
-Diethyl (3-Ethyl-2,2-dimethyl-3,4-dihydro-2
H
-chromen-4-yl)methylphosphonothioate (14a): 1,7-Diene 13a (0.150 g, 0.74 mmol, 1 equiv), diethyl thiophosphite (0.114 g, 0.74 mmol, 1 equiv)
and AIBN (0.097 g, 0.59 mmol, 0.8 equiv, 1 portion) were heated to reflux in degassed
cyclohexane (20 mL) overnight. After cooling to r.t., the solvent was evaporated and
purification of the crude product by column chromatography (silica, petrol) afforded
14a (0.073 g, 28%) as a colourless oil, as an inseparable 1:1 mixture of cis- and trans-diastereoisomers as indicated by the 1H NMR spectrum. IR (CH2Cl2): 3055, 2983, 2937, 2904, 2879, 1606, 1581, 1487, 1452, 1387, 1371, 1302, 1261, 1225,
1159, 1026 cm-1. 1H NMR (400 MHz, CDCl3; both diastereoisomers): δ = 7.40, 7.29 (2 × d, 2 × J = 8.0 Hz, 1 H, ArCH), 7.11, 7.09 (2 × t, 2 × J = 8.0 Hz, 1 H, ArCH), 6.98, 6.86 (2 × t, 2 × J = 8.0 Hz, 1 H, ArCH), 6.78, 6.74 (2 × d, 2 × J = 8.0 Hz, 1 H, ArCH), 3.96-4.28 (m, 4 H, 2 × OCH
2Me), 3.58, 3.32 (2 × app. ddt, J = 19.0, 6.0, 5.0 Hz and J = 24.0, 5.5, 5.0 Hz, 1 H, PCHAHBCH), 2.40-2.62, 2.27 (m and app. td, J = 16.0, 5.0 Hz, 2 H, PCH
A
H
B), 1.19-1.83 (m, 15 H, MeCMe, CHCH
2Me, 2 × OCH2
Me), 1.04, 1.02 (2 × t, 2 × J = 7.5 Hz, 3 H, CHCH2
Me). 13C NMR (100 MHz, CDCl3; both diastereoisomers): δ = 153.6, 152.9 (ArCO), 127.8, 127.7, 127.5, 2 × 125.7 (2 × d, 3
J
CP = 10.5, 7.0 Hz, PCHAHBCHArC), 120.5, 120.0, 2 × 117.3 (4 × ArCH), 78.7 (MeCMe), 62.7, 62.6, 62.3, 62.2 (4 × d, 2
J
CP = 4 × 7.0 Hz, 2 × OCH2Me), 48.1 (d, 3
J
CP = 5.5 Hz, PCHAHBCHCH), 42.3, 34.6 (2 × d, 1
J
CP = 109.0, 110.5 Hz, PCHAHB), 33.1, 32.0 (2 × d, 2
J
CP = 2.5, 1.5 Hz, PCHAHB
CH), 28.7, 27.8, 26.3, 24.3 (MeCMe), 23.2, 19.5 (CHCH2Me), 3 × 16.2, 16.1 (4 × d, 3
J
CP = 4 × 7.0 Hz, 2 × OCH2
Me), 14.2, 13.7 (CHCH2
Me). MS (CI, NH3): m/z (%) = 357 (100) [MH+]. HRMS (CI): m/z calcd for C18H30O3PS [M + H+]: 357.1653; found: 357.1652.
For other examples of 6-exo cyclisations of benzylic radicals, see:
<A NAME="RD30307ST-11A">11a</A>
Studer A.
Angew Chem. Int. Ed.
2000,
1108
<A NAME="RD30307ST-11B">11b</A>
Pattenden G.
Reddy LK.
Walter A.
Tetrahedron Lett.
2004,
45:
4027
<A NAME="RD30307ST-11C">11c</A>
Binot G.
Quiclet-Sire B.
Saleh T.
Zard SZ.
Synlett
2003,
382
Resonance-stabilised radicals are known to undergo reversible cyclisations. See for
example:
<A NAME="RD30307ST-12A">12a</A>
Walling C.
Cioffari A.
J. Am. Chem. Soc.
1972,
94:
6064
<A NAME="RD30307ST-12B">12b</A>
Julia M.
Acc. Chem. Res.
1971,
4:
386
<A NAME="RD30307ST-12C">12c</A>
Julia M.
Pure Appl. Chem.
1974,
40:
553
<A NAME="RD30307ST-13">13</A>
Synthesis of Methyl 2-{4-[(Diethoxyphosphoro-thioyl)methyl]-2,2-dimethyl-3,4-dihydro-2
H
-chromen-3-yl}acetate (14c): 1,7-Diene 13c (0.250 g, 1.02 mmol, 1 equiv), diethyl thiophosphite (0.782 g, 5.08 mmol, 5 equiv)
and AIBN (0.042 g, 0.25 mmol, 0.25 equiv, 5 portions, 1 h between additions) were
heated to reflux in anhyd degassed THF (20 mL) overnight. After cooling to r.t., the
solvent was evaporated and excess diethyl thiophosphite was removed by distillation
(75 °C/3 mmHg). Purification of the residue by column chromatography (silica; PE-Et2O, 9:1) afforded 14c (0.221 g, 54%) as a yellow oil. IR (CH2Cl2): 2982, 2953, 2853, 1735, 1608, 1582, 1488, 1453, 1437, 1388, 1372, 1302, 1249, 1228,
1170, 1138, 1116, 1098, 1026 cm-1. 1H NMR (400 MHz, CDCl3): δ = 7.48 (d, J = 7.5 Hz, 1 H, ArCH), 7.11 (t, J = 7.5 Hz, 1 H, ArCH), 6.90 (t, J = 7.5 Hz, 1 H, ArCH), 6.76 (d, J = 7.5 Hz, 1 H, ArCH), 4.06-4.28 (m, 4 H, 2 × OCH
2Me), 3.70 (s, 3 H, CO2Me), 3.05-3.18 (m, 1 H, PCH2CH), 2.69 (dd, J = 16.0, 3.5 Hz, 1 H, CH
AHB), 2.32-2.55 (m, 4 H, PCH
2CHCHCHA
H
B), 1.35 (s, 3 H, MeCMe), 1.34 (t, J = 7.0 Hz, 6 H, 2 × OCH2
Me), 1.21 (s, 3 H, MeCMe). 13C NMR (100 MHz, CDCl3): δ = 173.6 (CO2Me), 152.6 (ArCO), 129.3, 127.7, 120.7, 117.3 (4 × ArCH), 125.5 (d, 3
J
CP = 7.5 Hz, PCH2CHArC), 76.8 (MeCMe), 62.8, 62.6 (2 × d, 2
J
CP = 2 × 7.0 Hz, 2 × OCH2Me), 51.9 (CO2
Me), 44.1 (d, 3
J
CP = 7.0 Hz, PCH2CHCH), 41.3 (d, 1
J
CP = 111.0 Hz, PCH2), 35.6 (CH2CO2), 33.6 (d, 2
J
CP = 1.5 Hz, PCH2
CH), 27.3, 21.7 (MeCMe), 16.2, 16.1 (2 × d, 3
J
CP = 2 × 7.0 Hz, 2 × OCH2
Me). MS (CI, NH3): m/z (%) = 401 (100) [MH+]. HRMS (CI): m/z calcd for C19H29O5PS [M + H+]: 401.1552; found: 401.1551.
<A NAME="RD30307ST-14">14</A>
4-(2,2-Diphenylvinyl)-3-ethyl-2,2-dimethylchromane (15): colourless oil (6.5:1 mixture of diastereoisomers). IR (CH2Cl2): 3019, 2958, 2931, 1598, 1581, 1484, 1451, 1386, 1302, 1148, 1030 cm-1. 1H NMR (400 MHz, CDCl3; both diastereoisomers): δ = 7.20-7.42 (m, 11 H, 11 × ArCH), 7.11 (t, J = 7.0 Hz, 1 H, ArCH), 6.85 (t, J = 7.0 Hz, 1 H, ArCH), 6.77 (d, J = 7.0 Hz, 1 H, ArCH), 6.29, 5.95 (2 × d, J = 2 × 10.5 Hz, 1 H, cis-C=CH and trans-C=CH), 3.42 (app. t, J = 10.5 Hz, 1 H, CHCH=C), 1.54 (dt, J = 10.5, 4.5 Hz, 1 H, CHCH2Me), 0.98, 1.42 (2 × s, 2 × 3 H, MeCMe), 1.20-1.40 (m, 2 H, CH
2Me), 0.80-0.92 (m, 3 H, CH2
Me). 13C NMR (100 MHz, CDCl3; both diastereoisomers): δ = 153.1 (ArCO), 143.2, 142.3, 139.8 (3 × ArC), 131.1, 2 × 129.6, 2 × 128.4, 2 × 128.2, 127.8, 2 × 127.3, 2 × 127.2, 124.1, 119.7,
117.0 (14 × ArCH, C=CH), 78.0 (MeCMe), 48.9 (CHCH2Me), 40.1 (CHCH=C), 28.3 (MeCMe), 23.6 (CH2Me), 20.3 (MeCMe), 15.2 (CH2
Me). MS (CI, NH3): m/z (%) = 369 (45) [MH+], 357 (100). HRMS (CI): m/z calcd for C27H28O [M + H+]: 369.2218; found: 369.2217.
<A NAME="RD30307ST-15">15</A> For a related cyclisation, see:
Samarat A.
Landais Y.
Amri H.
Tetrahedron Lett.
2004,
45:
2049