Subscribe to RSS
DOI: 10.1055/s-2008-1027669
© Georg Thieme Verlag KG Stuttgart · New York
Multi-Detector Computed Tomography to Analyze In-Stent Restenoses at Different Heart Rates
Multidetektor-Computertomografie zur Analyse von In-Stent-Restenosen bei verschiedenen HerzfrequenzenPublication History
received: 27.1.2008
accepted: 11.6.2008
Publication Date:
08 August 2008 (online)

Zusammenfassung
Ziel: Mit dieser Studie wurde die Darstellbarkeit von koronaren In-Stent-Restenosen mittels Multidetektor-Computertomografie (MDCT) untersucht. Material und Methoden: Es wurde ein Restenosephantom mit verschiedenen Stent-versorgten Stenosen benutzt. Dieses Phantom wurde an ein dynamisches Herzphantom gekoppelt, das sich mit Herzfrequenzen von 40 – 120 /min bewegte. Die MDCT wurde mit zwei Scan-Protokollen durchgeführt: ein Standardprotokoll und ein ultrahochauflösendes Protokoll. Ergebnisse: Bei Benutzung des ultrahochauflösenden Protokolls waren Artefakte bis 0,6 mm um die Stentstreben herum nachweisbar (p < 0,001). Die Artefakte beeinträchtigten die Unterscheidung zwischen keiner Stenose und einer niedriggradigen Stenose. Etwa 73 % des zentralen Lumen-Diameters konnte ohne limitierende Artefakte beurteilt werden, sodass die Unterscheidung zwischen keiner oder niedriggradiger und mittel- sowie hochgradiger Stenose gut möglich war (p < 0,05). Wurde das Standardprotokoll im dynamischen Phantom benutzt, verminderte sich die Bildqualität und die Darstellbarkeit der Stenosen mit steigenden Herzfrequenzen (p < 0,0002 und p < 0,004). Dies konnte durch eine Analyse in einem optimalen RR-Intervall kompensiert werden. Im optimalen RR-Intervall war eine Beurteilung des Grades der Stenosen oberhalb von 30 % und bis zu einer Herzfrequenz von 120 /min möglich. Schlussfolgerung: Die Multidetektor-Computertomografie mit ultrahochauflösenden Scan-Protokollen ermöglicht die Beurteilung eines weiten Bereichs von In-Stent-Restenosen. Unter diesen experimentellen Bedingungen erlaubten die Standardprotokolle eine Unterscheidung von niedrig-, mittel- und hochgradigen Stenosen sogar bei Herzfrequenzen über 100 /min.
Abstract
Purpose: This study was performed to evaluate the visualization of coronary in-stent restenosis by multi-detector computed tomography (MDCT). Materials and Methods: A restenosis phantom with different stented stenoses was used. The phantom was placed into a dynamic heart phantom with heart rates from 40 to 120 bpm. MDCT was performed with two scan protocols: a standard and an ultra-high resolution scan protocol. Results: Using the ultra-high resolution protocol, artifacts occurred at 0.6 mm around the stent struts (p < 0.001). Artifacts compromised the discrimination between no stenosis and low-grade stenosis. Approximately 73 % of the central lumen diameter was able to be assessed without limiting artifacts allowing the discrimination of no or low vs. moderate and high-grade stenoses (p < 0.05). Using the standard protocol in the dynamic phantom, the image quality and visibility of stenoses decreased with an increasing heart rate (p < 0.0002 and p < 0.004). This was able to be compensated by analysis in an appropriate RR-interval. At the optimal RR-interval, an assessment of the grade of stenoses > 30 % was feasible up to 120 bpm. Conclusion: Multi-detector computed tomography ultra-high resolution scans allowed the assessment of a wide range of degrees of in-stent restenoses. In this experimental setup, standard protocols allowed a discrimination of low, moderate and high-grade stenoses even at heart rates above 100 bpm.
Key words
Multi-detector row computed tomography - heart - coronary stents - MDCT - coronary artery disease
References
- 1
Stein P D, Beemath A, Kayali F. et al .
Multidetector computed tomography for the diagnosis of coronary artery disease: a
systematic review.
Am J Med.
2006;
119
203-216
MissingFormLabel
- 2
Dewey M, Hamm B.
CT coronary angiography: examination technique, clinical results, and outlook on future
developments.
Fortschr Röntgenstr.
2007;
179
246-260
MissingFormLabel
- 3
Soon K H, Kelly A M, Cox N. et al .
Non-invasive multislice computed tomography coronary angiography for imaging coronary
arteries, stents and bypass grafts.
Intern Med J.
2006;
36
43-50
MissingFormLabel
- 4
Budoff M J, Achenbach S, Blumenthal R S. et al .
Assessment of coronary artery disease by cardiac computed tomography: a scientific
statement from the American Heart Association committee on Cardiovascular Imaging
and Intervention, Council on Cardiovascular Radiology and Intervention, and Committee
on Cardiac Imaging, Council on Clinical Cardiology.
Circulation.
2006;
114
1761-1791
MissingFormLabel
- 5
Achenbach S, Ulzheimer S, Baum U. et al .
Noninvasive coronary angiography by retrospectively ECG-gated multislice spiral CT.
Circulation.
2000;
102
2823-2828
MissingFormLabel
- 6
Achenbach S, Ropers D, Kuettner A. et al .
Contrast-enhanced coronary artery visualization by dual-source computed tomography
– initial experience.
Eur J Radiol.
2006;
57
331-335
MissingFormLabel
- 7
Manzke R, Kohler T, Nielsen T. et al .
Automatic phase determination for retrospectively gated cardiac CT.
Med Phys.
2004;
31
3345-3362
MissingFormLabel
- 8
Funabashi N, Komiyama N, Komuro I.
Patency of coronary artery lumen surrounded by metallic stent evaluated by three dimensional
volume rendering images using ECG gated multislice computed tomography.
Heart.
2003;
89
388
MissingFormLabel
- 9
Maintz D, Juergens K U, Wichter T. et al .
Imaging of coronary artery stents using multislice computed tomography: in vitro evaluation.
Eur Radiol.
2003;
13
830-835
MissingFormLabel
- 10
Mahnken A H, Buecker A, Wildberger J E. et al .
Coronary artery stents in multislice computed tomography: in vitro artifact evaluation.
Invest Radiol.
2004;
39
27-33
MissingFormLabel
- 11
Maintz D, Grude M, Fallenberg E M. et al .
Assessment of coronary artery stents by multislice CT angiography.
Acta Radiol.
2003;
44
597-603
MissingFormLabel
- 12
Mahnken A H, Seyfarth T, Flohr T. et al .
Flat-panel detector comuted tomography for the assessment of coronary artery stents.
Invest Radiol.
2005;
40
8-13
MissingFormLabel
- 13
Gilard M, Cornily J C, Pennec P Y. et al .
Assessment of coronary artery stents by 16 slice comuted tomography.
Heart.
2006;
92
58-61
MissingFormLabel
- 14
Schuijf J D, Bax J J, Jukema W. et al .
Feasibility of assessment of coronary stent patency using 16 slice computed tomography.
Am J Cardiol.
2004;
94
427-30
MissingFormLabel
- 15
Maintz D, Seifarth H, Flohr T. et al .
Improved coronary artery stents visualization and in-stent restenosis detection using
16-slice computed tomography and dedicated image reconstruction technique.
Invest Radiol.
2003;
38
790-795
MissingFormLabel
- 16
Mahnken A H, Buecker A, Wildberger J E. et al .
Coronary artery stents in multislice computed tomography: in vitro artifact evaluation.
Invest Radiol.
2004;
39
27-33
MissingFormLabel
- 17
Achenbach S, Giesler T, Ropers D. et al .
Detection of coronary artery stenoses by contrast-enhanced, retrospectively electrocardiographically-gated,
multislice spiral computed tomography.
Circulation.
2001;
103
2535-2538
MissingFormLabel
- 18
Sediono W, Dossel O.
Elastomechanics of the ventricles: development of a phantom and results of simulation.
Biomed Tech.
2002;
47
243-245
MissingFormLabel
- 19
Begemann P G, Stevendaal van U, Manzke R. et al .
Evaluation of spatial and temporal resolution for ECG-gated 16-row multidetector CT
using a dynamic cardiac phantom.
Eur Radiol.
2005;
15
1015-1026
MissingFormLabel
- 20 Timinger H. Motion compensated navigation on virtual static roadmaps for coronary intervention. Berlin; Logos 2005: 1-153
MissingFormLabel
- 21
Van Stevendaal U, Koken P, Begemann P GC. et al .
ECG gated continuous circular cone-beam multi-cycle reconstruction for in-stent coronary
artery imaging: a phantom study.
Proceedings of SPIE.
2006;
DOI: 61420L-1-61 420-10
MissingFormLabel
- 22
Yamamura J, Stevendaal van U, Köster R. et al .
Experimental 16 row CT evaluation of in-stent restenosis using new static and moving
cardiac stent phantoms. Experimental examination.
Fortschr Röntgenstr.
2006;
178
1079-1085
MissingFormLabel
- 23
Grass M, Manzke R, Nielsen T. et al .
Helical cardiac cone beam reconstruction using retrospective ECG gating.
Phys Med Biol.
2003;
48
3069-3084
MissingFormLabel
- 24
Manzke R, Grass M, Nielsen T. et al .
Adaptive temporal resolution optimization in helical cardiac cone beam CT reconstruction.
Med Phys.
2003;
30
3072-3080
MissingFormLabel
- 25
Serruys P W, Kutryk M J, Ong A T.
Coronary artery stents.
N Engl J Med.
2006;
354
483-495
MissingFormLabel
- 26
Maintz D, Seifarth H, Raupach R. et al .
64-slice multidetector coronary CT angiography: in vitro evaluation of 68 different
stents.
Eur Radiol.
2006;
16
818-826
MissingFormLabel
- 27
Flohr T, Stierstorfer K, Raupach R. et al .
Performance of a 64-slice CT system with z-flying focal spot.
Fortschr Röntgenstr.
2004;
176
1803-1810
MissingFormLabel
- 28
Krüger S, Mahnken A H, Sinha A M. et al .
Multislice spiral computed tomography for the detection of coronary stent restenosis
and patency.
Int J Cardiol.
2003;
89
167-172
MissingFormLabel
- 29
Gaspar T, Halon D A, Lewis B S. et al .
Diagnosis of coronary in-stent restenosis with multidetector row spiral computed tomography.
J Am Coll Cardiol.
2005;
46
1573-1579
MissingFormLabel
- 30
Mahnken A H, Mühlenbruch G, Seyfarth T. et al .
64-slice computed tomography assessment of coronary artery stents. A phantom study.
Acta Radiologica.
2006;
47
36-42
MissingFormLabel
- 31
Rixe J, Achenbach S, Ropers D. et al .
Assessment of coronary artery stent restenosis by 64-slice multi-detector computed
tomography.
Eur Heart J.
2006;
27
2567-2572
MissingFormLabel
- 32
Niemann K, Rensing B J, Geuns R J. et al .
Non-invasive coronary angiography with multisclice spiral computed tomography: impact
of heart rate.
Heart.
2002;
88
470-474
MissingFormLabel
- 33
Cademartiri van F, Runza G, Mollet N R. et al .
Impact of intravascular enhancement, heart rate, and calcium score on diagnostic accuracy
in multislice computed tomography coronary angiography.
Radiol Med.
2005;
110
42-51
MissingFormLabel
- 34
Hoffmann M, Lessick J, Manzke R. et al .
Automatic determination of minimal cardiac motion phases for computed tomography imaging:
initial experience.
Eur Radiol.
2006;
16
365-373
MissingFormLabel
- 35
Seifarth H, Ozgun M, Raupach R. et al .
64- versus 16-slice CT angiography for coronary artery stents assessment: in vitro
experience.
Invest Radiol.
2006;
41
22-27
MissingFormLabel
- 36
Schiele T M.
Current understanding of coronary in-stent restenosis. Pathophysiology, clinical presentation,
diagnostic work-up, and management.
Z Kardiol.
2005;
94
772-790
MissingFormLabel
Dr. Ralf Köster
Klinik und Poliklinik für Kardiologie und Angiologie, Universitäres Herzzentrum Hamburg
Martinistraße 52
20246 Hamburg
Phone: ++ 49/40/4 28 03 75 07
Fax: ++ 49/40/4 28 03 29 67
Email: rkoester@uke.uni-hamburg.de