Zusammenfassung
Die Neonatologie erlebt gegenwärtig einen Paradigmen-Shift hin zu einem vermehrten
frühen diagnostischen Einsatz der MRT-Bildgebung bei Risiko-Neugeborenen und Kindern
im ersten Lebensjahr. Neben der gezielten Anwendung hochauflösender MRT-Bildgebung
in klinischer Indikation werden in zunehmendem Maße funktionelle MRT-(fMRT-)Untersuchungen
bei Kindern im ersten Lebensjahr durchgeführt. Einerseits erlaubt die fMRT, funktionelle
Entwicklungsprozesse des Gehirns in Abhängigkeit des Maturationsstadiums abzubilden,
andererseits besteht die Hoffnung, pathophysiologische Prozesse im Gehirn zu einem
möglichst frühen Zeitpunkt zu detektieren und damit die Grundlage für eine frühzeitige
und gezielte therapeutische Intervention zu schaffen. Diese Übersichtsarbeit bietet
einen Überblick über bisherige Anwendungen der fMRT bei Neugeborenen und Kindern im
ersten Lebensjahr und thematisiert die hiermit assoziierten methodischen Aspekte (u.
a. Signalphysiologie, Sicherheitsaspekte, Sedierung).
Abstract
Currently, a paradigm shift towards expanded early use of cranial MRI in newborns
at risk and infants in the first year of life can be observed in neonatology. Beyond
clinical MRI applications, there is progressive use of functional MRI (fMRI) in this
age group. On the one hand, fMRI allows monitoring of functional developmental processes
depending on maturational stage; on the other hand, this technique may provide the
basis for early detection of pathophysiological processes as a prerequisite for functionally
guided therapeutic interventions. This article provides a comprehensive review of
current fMRI applications in neonates and infants during the first year of life and
focuses on the associated methodological issues (e. g. signal physiology, sedation,
safety aspects).
Key words
MR functional imaging - children - injuries - MR imaging
Literatur
1
Bangert B A.
Magnetic resonance techniques in the evaluation of the fetal and neonatal brain.
Semin Pediatr Neurol.
2001;
8
74-88
2
Baarsma R, Laurini R N, Baerts W. et al .
Reliability of sonography in non-hemorrhagic periventricular leucomalacia.
Pediatr Radiol.
1987;
17
189-191
3
Dammann O, Leviton A.
Neuroimaging and the prediction of outcomes in preterm infants.
N Engl J Med.
2006;
355
727-729
4
Woodward L J, Anderson P J, Austin N C. et al .
Neonatal MRI to predict neurodevelopmental outcomes in preterm infants.
N Engl J Med.
2006;
355
685-694
5
Nanba Y, Matsui K, Aida N. et al .
Magnetic resonance imaging regional T 1 abnormalities at term accurately predict motor
outcome in preterm infants.
Pediatrics.
2007;
120
e10-e19
6
Thompson D K, Warfield S K, Carlin J B. et al .
Perinatal risk factors altering regional brain structure in the preterm infant.
Brain.
2007;
130
667-677
7
Srinivasan L, Allsop J, Counsell S J. et al .
Smaller cerebellar volumes in very preterm infants at term-equivalent age are associated
with the presence of supratentorial lesions.
Am J Neuroradiol.
2006;
27
573-579
8
Srinivasan L, Dutta R, Counsell S J. et al .
Quantification of deep gray matter in preterm infants at term-equivalent age using
manual volumetry of 3-tesla magnetic resonance images.
Pediatrics.
2007;
119
759-765
9
Boardman J P, Counsell S J, Rueckert D. et al .
Abnormal deep grey matter development following preterm birth detected using deformation-based
morphometry.
Neuroimage.
2006;
32
70-78
10
Palmer F B.
Strategies for the early diagnosis of cerebral palsy.
J Pediatr.
2004;
145
S8-S11
11
Moller F, Ulmer S, Wolff S. et al .
Kortikale Reorganisation bei Kindern mit konnataler spastischer Hemiparese – eine
funktionelle Magnetresonanztomographie-(fMRT-)Studie.
Fortschr Röntgenstr.
2005;
177
1552-1561
12
Scheef L, Landsberg M W, Boecker H.
Methodische Aspekte der funktionellen Neurobildgebung im MRT-Hochfeldbereich: eine
kritische Übersicht.
Fortschr Röntgenstr.
2007;
179
925-931
13
Blondin D, Turowski B, Schaper J.
Fetal MRT.
Fortschr Röntgenstr.
2007;
179
111-118
14
Adamietz B, Cavallaro A, Radkow T. et al .
Untersuchungstoleranz von Kindern und Adoleszenten in einem 1,5 Tesla MR-Tomografen
mit offenem Magnetdesign.
Fortschr Röntgenstr.
2007;
179
826-831
15
Trasimeni G, Di Biasi C, Pirolli C. et al .
The basic concepts of the use of magnetic resonance in neuropediatrics.
Clin Ter.
1996;
147
259-266
16
Rutherford M, Ward P, Allsop J. et al .
Magnetic resonance imaging in neonatal encephalopathy.
Early Hum Dev.
2005;
81
13-25
17
Holden K R, Titus M O, Van Tassel P.
Cranial magnetic resonance imaging examination of normal term neonates: a pilot study.
J Child Neurol.
1999;
14
708-710
18
Almli C R, Rivkin M J, McKinstry R C.
The NIH MRI study of normal brain development (Objective-2): newborns, infants, toddlers,
and preschoolers.
Neuroimage.
2007;
35
308-325
19
Looney C B, Smith J K, Merck L H. et al .
Intracranial hemorrhage in asymptomatic neonates: prevalence on MR images and relationship
to obstetric and neonatal risk factors.
Radiology.
2007;
242
535-541
20
Whitby E H, Griffiths P D, Lonneker-Lammers T. et al .
Ultrafast magnetic resonance imaging of the neonate in a magnetic resonance-compatible
incubator with a built-in coil.
Pediatrics.
2004;
113
e150-e152
21
Bartha A I, Yap K R, Miller S P. et al .
The normal neonatal brain: MR imaging, diffusion tensor imaging, and 3D MR spectroscopy
in healthy term neonates.
AJNR Am J Neuroradiol.
2007;
28
1015-1021
22
Chateil J F, Quesson B, Brun M. et al .
Localised proton magnetic resonance spectroscopy of the brain after perinatal hypoxia:
a preliminary report.
Pediatr Radiol.
1999;
29
199-205
23
Martin E, Boesch C, Grutter R. et al .
Magnetic resonance in pediatric research and clinical practice. II. Studies on the
development and pathology of the brain in neonates, infants and young children.
Helv Paediatr Acta.
1988;
43
75-86
24
Liu G T, Hunter J, Miki A. et al .
Functional MRI in children with congenital structural abnormalities of the occipital
cortex.
Neuropediatrics.
2000;
31
13-15
25
Redcay E, Kennedy D P, Courchesne E.
fMRI during natural sleep as a method to study brain function during early childhood.
Neuroimage.
2007;
38
696-707
26
Sie L TL, Rombouts S A, Valk I J. et al .
Functional MRI of visual cortex in sedated 18 month-old infants with or without periventricular
leukomalacia.
Dev Med Child Neurol.
2001;
43
486-490
27
Miki A, Liu G T, Fletcher D W. et al .
Ocular dominance in anterior visual cortex in a child demonstrated by the use of fMRI.
Pediatr Neurol.
2001;
24
232-234
28
Patel A M, Cahill L D, Ret J. et al .
Functional magnetic resonance imaging of hearing-impaired children under sedation
before cochlear implantation.
Arch Otolaryngol Head Neck Surg.
2007;
133
677-683
29
Carmody D P, Moreno R, Mars A E. et al .
Brief report: brain activation to social words in a sedated child with autism.
J Autism Dev Disord.
2007;
37
1381-1385
30
Marcar V L, Schwarz U, Martin E. et al .
How depth of anesthesia influences the blood oxygenation level-dependent signal from
the visual cortex of children.
Am J Neuroradiol.
2006;
27
799-805
31
Bernal B, Altman N R.
Speech delay in children: a functional MR imaging study.
Radiology.
2003;
229
651-658
32
Souweidane M M, Kim K H, McDowall R. et al .
Brain mapping in sedated infants and young children with passive-functional magnetic
resonance imaging.
Pediatr Neurosurg.
1999;
30
86-92
33
Altman N R, Bernal B.
Brain activation in sedated children: auditory and visual functional MR imaging.
Radiology.
2001;
221
56-63
34
Born A P, Rostrup E, Miranda M J. et al .
Visual cortex reactivity in sedated children examined with perfusion MRI (FAIR).
Magn Reson Imaging.
2002;
20
199-205
35
Konishi Y, Taga G, Yamada H. et al .
Functional brain imaging using fMRI and optical topography in infancy.
Sleep Med.
2002;
3 Suppl 2
S41-S43
36
Seghier M L, Lazeyras F, Zimine S. et al .
Combination of event-related fMRI and diffusion tensor imaging in an infant with perinatal
stroke.
Neuroimage.
2004;
21
463-472
37
Born P, Leth H, Miranda M J. et al .
Visual activation in infants and young children studied by functional magnetic resonance
imaging.
Pediatr Res.
1998;
44
578-583
38
Rivkin M J, Wolraich D, Als H. et al .
Prolonged T*2 values in newborn versus adult brain: Implications for fMRI studies
of newborns.
Magn Reson Med.
2004;
51
1287-1291
39
Anderson A W, Marois R, Colson E R. et al .
Neonatal auditory activation detected by functional magnetic resonance imaging.
Magn Reson Imaging.
2001;
19
1-5
40
Cormio M, Gopinath S P, Valadka A. et al .
Cerebral hemodynamic effects of pentobarbital coma in head-injured patients.
J Neurotrauma.
1999;
16
927-936
41
Lindauer U, Villringer A, Dirnagl U.
Characterization of CBF response to somatosensory stimulation: model and influence
of anesthetics.
Am J Physiol.
1993;
264
H1223-H1228
42
Greenberg S B, Faerber E N, Aspinall C L. et al .
High-dose chloral hydrate sedation for children undergoing MR imaging: safety and
efficacy in relation to age.
Am J Roentgenol.
1993;
161
639-641
43
Ueki M, Mies G, Hossmann K A.
Effect of alpha-chloralose, halothane, pentobarbital and nitrous oxide anesthesia
on metabolic coupling in somatosensory cortex of rat.
Acta Anaesthesiol Scand.
1992;
36
318-322
44
Erberich S G, Panigrahy A, Friedlich P. et al .
Somatosensory lateralization in the newborn brain.
Neuroimage.
2006;
29
155-161
45
Heep A, Scheef L, Jankowski J. et al .
Functional MR Imaging of the sensorimotor system in preterm infants.
Pediatrics.
2008, in press;
46
Kiviniemi V J, Haanpaa H, Kantola J H. et al .
Midazolam sedation increases fluctuation and synchrony of the resting brain BOLD signal.
Magn Reson Imaging.
2005;
23
531-537
47
Van Bel F, Zeeuwe P E, Dorrepaal C A. et al .
Changes in cerebral hemodynamics and oxygenation during hypothermic cardiopulmonary
bypass in neonates and infants.
Biol Neonate.
1996;
70
141-154
48
O’Hare B, Bissonnette B, Bohn D. et al .
Persistent low cerebral blood flow velocity following profound hypothermic circulatory
arrest in infants.
Can J Anaesth.
1995;
42
964-971
49
Wardle S P, Yoxall C W, Weindling A M.
Cerebral oxygenation during cardiopulmonary bypass.
Arch Dis Child.
1998;
78
26-32
50
Bluml S, Friedlich P, Erberich S. et al .
MR imaging of newborns by using an MR-compatible incubator with integrated radiofrequency
coils: initial experience.
Radiology.
2004;
231
594-601
51
Erberich S G, Friedlich P, Seri I. et al .
Functional MRI in neonates using neonatal head coil and MR compatible incubator.
Neuroimage.
2003;
20
683-692
52
Dehaene-Lambertz G, Dehaene S, Hertz-Pannier L.
Functional neuroimaging of speech perception in infants.
Science.
2002;
298
2013-2015
53
Dehaene-Lambertz G, Hertz-Pannier L, Dubois J.
Nature and nurture in language acquisition: anatomical and functional brain-imaging
studies in infants.
Trends Neurosci.
2006;
29
367-373
54
Dehaene-Lambertz G, Hertz-Pannier L, Dubois J. et al .
Functional organization of perisylvian activation during presentation of sentences
in preverbal infants.
Proc Natl Acad Sci U S A.
2006;
103
14 240-14 245
55
Born A P, Miranda M J, Rostrup E. et al .
Functional magnetic resonance imaging of the normal and abnormal visual system in
early life.
Neuropediatrics.
2000;
31
24-32
56
Muramoto S, Yamada H, Sadato N. et al .
Age-dependent change in metabolic response to photic stimulation of the primary visual
cortex in infants: functional magnetic resonance imaging study.
J Comput Assist Tomogr.
2002;
26
894-901
57
Yamada H, Sadato N, Konishi Y. et al .
A milestone for normal development of the infantile brain detected by functional MRI.
Neurology.
2000;
55
218-223
58
Yamada H, Sadato N, Konishi Y. et al .
A rapid brain metabolic change in infants detected by fMRI.
Neuroreport.
1997;
8
3775-3778
59
Morita T, Kochiyama T, Yamada H. et al .
Difference in the metabolic response to photic stimulation of the lateral geniculate
nucleus and the primary visual cortex of infants: a fMRI study.
Neurosci Res.
2000;
38
63-70
60
Huttenlocher P R, Courten de C.
The development of synapses in striate cortex of man.
Hum Neurobiol.
1987;
6
1-9
61
Huttenlocher P R, Courten de C, Garey L J. et al .
Synaptogenesis in human visual cortex–evidence for synapse elimination during normal
development.
Neurosci Lett.
1982;
33
247-252
62
Chugani H T, Phelps M E.
Maturational changes in cerebral function in infants determined by 18FDG positron
emission tomography.
Science.
1986;
231
840-843
63
Huppi P S, Warfield S, Kikinis R. et al .
Quantitative magnetic resonance imaging of brain development in premature and mature
newborns.
Ann Neurol.
1998;
43
224-235
64
Giedd J N, Snell J W, Lange N. et al .
Quantitative magnetic resonance imaging of human brain development: ages 4 – 18.
Cereb Cortex.
1996;
6
551-560
65
Giedd J N, Vaituzis A C, Hamburger S D. et al .
Quantitative MRI of the temporal lobe, amygdala, and hippocampus in normal human development:
ages 4 – 18 years.
J Comp Neurol.
1996;
366
223-230
66
Matsuzawa J, Matsui M, Konishi T. et al .
Age-related volumetric changes of brain gray and white matter in healthy infants and
children.
Cereb Cortex.
2001;
11
335-342
67
Evans A C.
The NIH MRI study of normal brain development.
Neuroimage.
2006;
30
184-202
68
Durston S, Hulshoff Pol H E, Casey B J. et al .
Anatomical MRI of the developing human brain: what have we learned?.
J Am Acad Child Adolesc Psychiatry.
2001;
40
1012-1020
69
Nishida M, Makris N, Kennedy D N. et al .
Detailed semiautomated MRI based morphometry of the neonatal brain: preliminary results.
Neuroimage.
2006;
32
1041-1049
70
Gaillard W D, Grandin C B, Xu B.
Developmental aspects of pediatric fMRI: considerations for image acquisition, analysis,
and interpretation.
Neuroimage.
2001;
13
239-249
71
Aljabar P, Bhatia K K, Murgasova M. et al .
Assessment of brain growth in early childhood using deformation-based morphometry.
Neuroimage.
2008;
39
348-358
72
Muzik O, Chugani D C, Juhasz C. et al .
Statistical parametric mapping: assessment of application in children.
Neuroimage.
2000;
12
538-549
73
Burgund E D, Kang H C, Kelly J E. et al .
The feasibility of a common stereotactic space for children and adults in fMRI studies
of development.
Neuroimage.
2002;
17
184-200
74
Wilke M, Schmithorst V J, Holland S K.
Assessment of spatial normalization of whole-brain magnetic resonance images in children.
Hum Brain Mapp.
2002;
17
48-60
75
Wilke M, Schmithorst V J, Holland S K.
Normative pediatric brain data for spatial normalization and segmentation differs
from standard adult data.
Magn Reson Med.
2003;
50
749-757
76
Prastawa M, Gilmore J H, Lin W. et al .
Automatic segmentation of MR images of the developing newborn brain.
Med Image Anal.
2005;
9
457-466
77
Kazemi K, Moghaddam H A, Grebe R. et al .
A neonatal atlas template for spatial normalization of whole-brain magnetic resonance
images of newborns: preliminary results.
Neuroimage.
2007;
37
463-473
78
Seghier M L, Lazeyras F, Zimine S. et al .
Visual recovery after perinatal stroke evidenced by functional and diffusion MRI:
case report.
BMC Neurol.
2005;
5
17
79
Pujol J, Soriano-Mas C, Ortiz H. et al .
Myelination of language-related areas in the developing brain.
Neurology.
2006;
66
339-343
Prof. Henning Boecker
Radiologische Universitätsklinik Bonn, FE Klinische Funktionelle Neurobildgebung
Sigmund-Freud-Str. 25
53105 Bonn
Telefon: ++ 49/2 28/28 71 59 70
Fax: ++ 49/2 28/28 71 44 57
eMail: Henning.Boecker@ukb.uni-bonn.de