Aktuelle Dermatologie 2008; 34(3): 72-84
DOI: 10.1055/s-2007-995658
Übersicht

© Georg Thieme Verlag KG Stuttgart · New York

Die Rolle von Makrophagen in Entzündungen und Tumoren: neue Stabilin-1-vermittelte Prozesse

The Role of Macrophages in Inflammation and Cancer: New Processes Mediated by Stabilin-1J.  Kzhyshkowska1
  • 1Klinik für Dermatologie, Allergologie und Venerologie, Medizinische Fakultät Mannheim, Universität Heidelberg
Further Information

Publication History

Publication Date:
08 April 2008 (online)

Zusammenfassung

Makrophagen sind die entscheidenden Zellen bei der Initiation, Progression und Modulation inflammatorischer Reaktionen. Im gesunden Gewebe sorgen Makrophagen für eine homöostatische Balance. Zur Erfüllung ihrer Funktionen sind Makrophagen weit verbreitet: in großer Zahl kommen Makrophagen in lympho-hämatopoetischen Organen, in anderen differenzierten Geweben wie Lunge, Darm und Haut und in der Plazenta vor. Hier kommunizieren sie mit anderen Zellen über zahlreiche Oberflächenrezeptoren und lösliche Mediatoren. Alternativ aktivierte Makrophagen (M2) spielen eine Schlüsselrolle in der Initiation und Regulation anti-inflammatorischer Prozesse, in der Induktion von Heilungsprozessen sowie auch in Tumorprogression und Metastasierung. M2 werden in vitro durch das Th2-Zytokin IL-4 und durch Glukokortikoide induziert. Stabilin-1 ist ein Multidomänenprotein, das selektiv von M2 exprimiert wird. Wir konnten hier zeigen, dass Stabilin-1 ein spezieller Scavenger-Rezeptor ist und zwei Funktionen in alternativ aktivierten Makrophagen besitzt: Endozytose und intrazelluläre Sortierung. In M2 vermittelt Stabilin-1 einen neuen Prozess - die Internalisierung von SPARC, nicht-strukturelle Komponente der extrazellulären Matrix, der als entscheidender Regulator von Entwicklungsprozessen, Gewebeumbau, Angiogenese, Wundheilung und Tumoraggressivität funktioniert. Andererseits funktioniert Stabilin-1 als Sortierungsrezeptor für das neue Chitinase-ähnliche Protein SI-CLP und transportiert es zu dem lysosomalen Sekretionsweg. Die Identifikation von Stabilin-1 als Sortierungsrezeptor für SI-CLP ist das erste bekannte Beispiel für einen lysosomalen Sortierungsprozess, der speziell in alternativ aktivierten Makrophagen stattfindet. Makrophagen stellen eine Hauptproduktionsquelle für das Vorkommen verschiedener menschlicher Chitinasen und Chitinase-ähnlichen Proteine, die als Biomarker für Entzündungen und Tumoren dienen. Der von uns neu generierte monoklonale Rattenantikörper 1C11 gegen SI-CLP detektiert das Protein mit einer hohen Spezifität in menschlichem Gewebe und in peripheren Blutleukozyten und wird als Werkzeug für die Untersuchung von SI-CLP-assoziierten Erkrankungen dienen. SI-CLP ist auch ein potenzieller Marker für die individuelle Sensitivität von Patienten gegenüber Glukokortikoiden und für die Vorhersage der Nebenwirkungen der Glukokortikoidtherapie.

Abstract

Macrophages are essential cells for the initiation, progression and modulation of inflammatory reactions. Macrophages control homeostatic balance in healthy tissues. To fulfill their functions, macrophages appear in high amounts in lymph-hematopoetic organs, in differentiated tissues like lung, intestine and skin as well as in placenta. Macrophages use surface molecules and soluble mediators to communicate with other cell types. Alternatively activated macrophages (M2) play a key role in the initiation and regulation of anti-inflammatory processes, induction of healing as well as in tumour progression and metastasis. In vitro alternatively activated macrophages can be induced with Th2 cytokine IL-4 and gluococorticoids. Stabilin-1 is a multidomain protein which is selectively expressed by M2. We were able to show that stabilin-1 is a specific scavenger receptor and has dual function in alternatively activated macrophages: endocytosis and intracellular sorting. Stabilin-1 mediates a new process in M2: internalization for SPARC, a non-structural component of extracellular matrix which functions are critical for the developmental processes, tissue turn-over, angiogenesis, wound-healing and tumor progression. At the same time stabilin-1 functions as intracellular sorting receptor of new chitinase-like protein SI-CLP and delivers it to the lysosomal secretory pathway. Identification of stabilin-1 as a sorting receptor for SI-CLP is a first known example of lysosomal sorting process which is specific for alternatively activated macrophages. Macrophages are the major source for production of human chitinases and chitinase-like protein which are used as biomarkers for different inflammatory disorders and tumours. The newly generated monoclonal rat antibody 1c11 against SI-CLP monoclonal recognizes the protein in tissues and in peripheral blood leukocytes and can be used to search for the association of SI-CLP with diseases. SI-CLP can be also considered as potential marker for the individual sensitivity to glucocorticoids and for prediction of side effects of glucocorticoid-therapy.

Literatur

  • 1 Gordon S. Alternative activation of macrophages.  Nat Rev Immunol. 2003;  3 23-35
  • 2 Goerdt S, Politz O, Schledzewski K. et al . Alternative versus classical activation of macrophages.  Pathobiology. 1999;  67 222-226
  • 3 Goerdt S, Orfanos C E. Other functions, other genes: alternative activation of antigen-presenting cells.  Immunity. 1999;  10 137-142
  • 4 Gratchev A, Schledzewski K, Guillot P, Goerdt S. Alternatively activated antigen-presenting cells: molecular repertoire, immune regulation, and healing.  Skin Pharmacol Appl Skin Physiol. 2001;  14 272-279
  • 5 Kodelja V, Muller C, Politz O. et al . Alternative macrophage activation-associated CC-chemokine-1, a novel structural homologue of macrophage inflammatory protein-1 alpha with a Th2-associated expression pattern.  J Immunol. 1998;  160 1411-1418
  • 6 Gratchev A, Guillot P, Hakiy N. et al . Alternatively activated macrophages differentially express fibronectin and its splice variants and the extracellular matrix protein betaIG-H3.  Scand J Immunol. 2001;  53 386-392
  • 7 Gratchev A, Kzhyshkowska J, Utikal J, Goerdt S. Interleukin-4 and dexamethasone counterregulate extracellular matrix remodelling and phagocytosis in type-2 macrophages.  Scand J Immunol. 2005;  61 10-17
  • 8 Gratchev A, Kzhyshkowska J, Kothe K. et al . Mphi1 and Mphi2 can be re-polarized by Th2 or Th1 cytokines, respectively, and respond to exogenous danger signals.  Immunobiology. 2006;  211 473-486
  • 9 Schaer D J, Boretti F S, Schoedon G, Schaffner A. Induction of the CD163-dependent haemoglobin uptake by macrophages as a novel anti-inflammatory action of glucocorticoids.  Br J Haematol. 2002;  119 239-243
  • 10 Stout R D, Suttles J. Functional plasticity of macrophages: reversible adaptation to changing microenvironments.  J Leukoc Biol. 2004;  76 509-513
  • 11 Mantovani A, Sica A, Sozzani S. et al . The chemokine system in diverse forms of macrophage activation and polarization.  Trends Immunol. 2004;  25 677-686
  • 12 Hume D A. The mononuclear phagocyte system.  Curr Opin Immunol. 2006;  18 49-53
  • 13 Stout R D, Suttles J. Functional plasticity of macrophages: reversible adaptation to changing microenvironments.  J Leukoc Biol. 2004;  76 509-513
  • 14 Hayes M P, Wang J, Norcross M A. Regulation of interleukin-12 expression in human monocytes: selective priming by interferon-gamma of lipopolysaccharide-inducible p35 and p40 genes.  Blood. 1995;  86 646-650
  • 15 Herrero C, Hu X, Li W P. et al . Reprogramming of IL-10 activity and signaling by IFN-gamma.  J Immunol. 2003;  171 5034-5041
  • 16 Hu X, Herrero C, Li W P. et al . Sensitization of IFN-gamma Jak-STAT signaling during macrophage activation.  Nat Immunol. 2002;  3 859-866
  • 17 D'Andrea A, Ma X, Aste-Amezaga M, Paganin C, Trinchieri G. Stimulatory and inhibitory effects of interleukin (IL)-4 and IL-13 on the production of cytokines by human peripheral blood mononuclear cells: priming for IL-12 and tumor necrosis factor alpha production.  J Exp Med. 1995;  181 537-546
  • 18 Major J, Fletcher J E, Hamilton T A. IL-4 pretreatment selectively enhances cytokine and chemokine production in lipopolysaccharide-stimulated mouse peritoneal macrophages.  J Immunol. 2002;  168 2456-2463
  • 19 Anderson C F, Gerber J S, Mosser D M. Modulating macrophage function with IgG immune complexes.  J Endotoxin Res. 2002;  8 477-481
  • 20 Gerber J S, Mosser D M. Reversing lipopolysaccharide toxicity by ligating the macrophage Fc gamma receptors.  J Immunol. 2001;  166 6861-6868
  • 21 Gerber J S, Mosser D M. Stimulatory and inhibitory signals originating from the macrophage Fcgamma receptors.  Microbes Infect. 2001;  3 131-139
  • 22 Grazia C M, Sutterwala F S, Trinchieri G, Mosser D M, Ma X. Suppression of Il-12 transcription in macrophages following Fc gamma receptor ligation.  J Immunol. 2001;  166 4498-4506
  • 23 Peiser L, Mukhopadhyay S, Gordon S. Scavenger receptors in innate immunity.  Curr Opin Immunol. 2002;  14 123-128
  • 24 Greaves D R, Gordon S. Thematic review series: the immune system and atherogenesis. Recent insights into the biology of macrophage scavenger receptors.  J Lipid Res. 2005;  46 11-20
  • 25 Krieger M, Stern D M. Series introduction: multiligand receptors and human disease.  J Clin Invest. 2001;  108 645-647
  • 26 Boullier A, Bird D A, Chang M K. et al . Scavenger receptors, oxidized LDL, and atherosclerosis.  Ann N Y Acad Sci. 2001;  947 214-222
  • 27 Gordon S. Pattern recognition receptors: doubling up for the innate immune response.  Cell. 2002;  111 927-930
  • 28 Platt N, Gordon S. Is the class A macrophage scavenger receptor (SR-A) multifunctional? - The mouse's tale.  J Clin Invest. 2001;  108 649-654
  • 29 Taylor P R, Gordon S, Martinez-Pomares L. The mannose receptor: linking homeostasis and immunity through sugar recognition.  Trends Immunol. 2005;  26 104-110
  • 30 Allavena P, Chieppa M, Monti P, Piemonti L. From pattern recognition receptor to regulator of homeostasis: the double-faced macrophage mannose receptor.  Crit Rev Immunol. 2004;  24 179-192
  • 31 Nigou J, Zelle-Rieser C, Gilleron M, Thurnher M, Puzo G. Mannosylated lipoarabinomannans inhibit IL-12 production by human dendritic cells: evidence for a negative signal delivered through the mannose receptor.  J Immunol. 2001;  166 7477-7485
  • 32 Chieppa M, Bianchi G, Doni A. et al . Cross-linking of the mannose receptor on monocyte-derived dendritic cells activates an anti-inflammatory immunosuppressive program.  J Immunol. 2003;  171 4552-4560
  • 33 Fadok V A, Bratton D L, Konowal A. et al . Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF.  J Clin Invest. 1998;  101 890-898
  • 34 Serhan C N, Savill J. Resolution of inflammation: the beginning programs the end.  Nat Immunol. 2005;  6 1191-1197
  • 35 Fadok V A, Bratton D L, Henson P M. Phagocyte receptors for apoptotic cells: recognition, uptake, and consequences.  J Clin Invest. 2001;  108 957-962
  • 36 Ogden C A, deCathelineau A, Hoffmann P R. et al . C1q and mannose binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells.  J Exp Med. 2001;  194 781-795
  • 37 Henson P M, Bratton D L, Fadok V A. The phosphatidylserine receptor: a crucial molecular switch?.  Nat Rev Mol Cell Biol. 2001;  2 627-633
  • 38 Fadok V A, Warner M L, Bratton D L, Henson P M. CD36 is required for phagocytosis of apoptotic cells by human macrophages that use either a phosphatidylserine receptor or the vitronectin receptor (alpha v beta 3).  J Immunol. 1998;  161 6250-6257
  • 39 Norsworthy P J, Fossati-Jimack L, Cortes-Hernandez J. et al . Murine CD93 (C1qRp) contributes to the removal of apoptotic cells in vivo but is not required for C1q-mediated enhancement of phagocytosis.  J Immunol. 2004;  172 3406-3414
  • 40 Huynh M L, Fadok V A, Henson P M. Phosphatidylserine-dependent ingestion of apoptotic cells promotes TGF-beta1 secretion and the resolution of inflammation.  J Clin Invest. 2002;  109 41-50
  • 41 Goerdt S, Walsh L J, Murphy G F, Pober J S. Identification of a novel high molecular weight protein preferentially expressed by sinusoidal endothelial cells in normal human tissues.  J Cell Biol. 1991;  113 1425-1437
  • 42 Politz O, Gratchev A, McCourt P A. et al . Stabilin-1 and -2 constitute a novel family of fasciclin-like hyaluronan receptor homologues.  Biochem J. 2002;  362 155-164
  • 43 McCourt P A, Smedsrod B H, Melkko J, Johansson S. Characterization of a hyaluronan receptor on rat sinusoidal liver endothelial cells and its functional relationship to scavenger receptors.  Hepatology. 1999;  30 1276-1286
  • 44 Kzhyshkowska J, Gratchev A, Goerdt S. Stabilin-1, a homeostatic scavenger receptor with multiple functions.  J Cell Mol Med. 2006;  10 635-649
  • 45 Goerdt S, Bhardwaj R, Sorg C. Inducible expression of MS-1 high-molecular-weight protein by endothelial cells of continuous origin and by dendritic cells/macrophages in vivo and in vitro.  Am J Pathol. 1993;  142 1409-1422
  • 46 Salmi M, Koskinen K, Henttinen T, Elima K, Jalkanen S. CLEVER-1 mediates lymphocyte transmigration through vascular and lymphatic endothelium.  Blood. 2004;  104 3849-3857
  • 47 Walsh L J, Goerdt S, Pober J S, Sueki H, Murphy G F. MS-1 sinusoidal endothelial antigen is expressed by factor XIIIa+, HLA-DR+ dermal perivascular dendritic cells.  Lab Invest. 1991;  65 732-741
  • 48 Cupurdija K, Azzola D, Hainz U. et al . Macrophages of Human First Trimester Decidua Express Markers Associated to Alternative Activation.  Am J Reprod Immunol. 2004;  51 117-122
  • 49 Prevo R, Banerji S, Ni J, Jackson D G. Rapid plasma membrane-endosomal trafficking of the lymph node sinus and high endothelial venule scavenger receptor/homing receptor stabilin-1 (FEEL-1/CLEVER-1).  J Biol Chem. 2004;  279 52 580-52 592
  • 50 Goerdt S, Bonsmann G, Sunderkotter C. et al . A unique non-Langerhans cell histiocytosis with some features of generalized eruptive histiocytoma.  J Am Acad Dermatol. 1994;  31 322-326
  • 51 Utikal J, Klemke C D, Gratchev A, Goerdt S. Cutaneous non-Langerhans" cell histiocytoses.  J Dtsch Dermatol Ges. 2003;  1 471-491
  • 52 Schledzewski K, Falkowski M, Moldenhauer G. et al . Lymphatic endothelium-specific hyaluronan receptor LYVE-1 is expressed by stabilin-1(+), F4/80(+), CD11b(+) macrophages in malignant tumours and wound healing tissue in vivo and in bone marrow cultures in vitro: implications for the assessment of lymphangiogenesis.  J Pathol. 2006;  209 67-77
  • 53 Kzhyshkowska J, Gratchev A, Martens J H. et al . Stabilin-1 localizes to endosomes and the trans-Golgi network in human macrophages and interacts with GGA adaptors.  J Leukoc Biol. 2004;  76 1151-1161
  • 54 Kzhyshkowska J, Gratchev A, Brundiers H. et al . Phosphatidylinositide 3-kinase activity is required for stabilin-1-mediated endosomal transport of acLDL.  Immunobiology. 2005;  210 161-173
  • 55 Katso R, Okkenhaug K, Ahmadi K. et al . Cellular function of phosphoinositide 3-kinases: implications for development, homeostasis, and cancer.  Annu Rev Cell Dev Biol. 2001;  17 615-675
  • 56 Foster F M, Traer C J, Abraham S M, Fry M J. The phosphoinositide (PI) 3-kinase family.  J Cell Sci. 2003;  116 3037-3040
  • 57 Gillooly D J, Morrow I C, Lindsay M. et al . Localization of phosphatidylinositol 3-phosphate in yeast and mammalian cells.  EMBO J. 2000;  19 4577-4588
  • 58 Lemmon M A. Phosphoinositide recognition domains.  Traffic. 2003;  4 201-213
  • 59 Zerial M, McBride H. Rab proteins as membrane organizers.  Nat Rev Mol Cell Biol. 2001;  2 107-117
  • 60 Simonsen A, Lippe R, Christoforidis S. et al . EEA1 links PI(3)K function to Rab5 regulation of endosome fusion.  Nature. 1998;  394 494-498
  • 61 Bradshaw A D, Sage E H. SPARC, a matricellular protein that functions in cellular differentiation and tissue response to injury.  J Clin Invest. 2001;  107 1049-1054
  • 62 Bradshaw A D, Reed M J, Sage E H. SPARC-null mice exhibit accelerated cutaneous wound closure.  J Histochem Cytochem. 2002;  50 1-10
  • 63 Brekken R A, Sage E H. SPARC, a matricellular protein: at the crossroads of cell-matrix communication.  Matrix Biol. 2001;  19 816-827
  • 64 Framson P E, Sage E H. SPARC and tumor growth: where the seed meets the soil?.  J Cell Biochem. 2004;  92 679-690
  • 65 Koukourakis M I, Giatromanolaki A, Brekken R A. et al . Enhanced expression of SPARC/osteonectin in the tumor-associated stroma of non-small cell lung cancer is correlated with markers of hypoxia/acidity and with poor prognosis of patients.  Cancer Res. 2003;  63 5376-5380
  • 66 Yan Q, Sage E H. SPARC, a matricellular glycoprotein with important biological functions.  J Histochem Cytochem. 1999;  47 1495-1506
  • 67 Murphy-Ullrich J E. The de-adhesive activity of matricellular proteins: is intermediate cell adhesion an adaptive state?.  J Clin Invest. 2001;  107 785-790
  • 68 Kzhyshkowska J, Workman G, Cardo-Vila M. et al . Novel function of alternatively activated macrophages: Stabilin-1-mediated clearance of SPARC.  J Immunol. 2006;  176 5825-5832
  • 69 Barker T H, Framson P, Puolakkainen P A. et al . Matricellular homologs in the foreign body response: hevin suppresses inflammation, but hevin and SPARC together diminish angiogenesis.  Am J Pathol. 2005;  166 923-933
  • 70 Iruela-Arispe M L, Lane T F, Redmond D. et al . Expression of SPARC during development of the chicken chorioallantoic membrane: evidence for regulated proteolysis in vivo.  Mol Biol Cell. 1995;  6 327-343
  • 71 Massi D, Franchi A, Borgognoni L, Reali U M, Santucci M. Osteonectin expression correlates with clinical outcome in thin cutaneous malignant melanomas.  Hum Pathol. 1999;  30 339-344
  • 72 Robert G, Gaggioli C, Bailet O. et al . SPARC represses E-cadherin and induces mesenchymal transition during melanoma development.  Cancer Res. 2006;  66 7516-7523
  • 73 Prada F, Benedetti L G, Bravo A I. et al . SPARC endogenous level, rather than fibroblast-produced SPARC or stroma reorganization induced by SPARC, is responsible for melanoma cell growth.  J Invest Dermatol. 2007;  127 2618-2628
  • 74 Schultz C, Lemke N, Ge S, Golembieski W A, Rempel S A. Secreted protein acidic and rich in cysteine promotes glioma invasion and delays tumor growth in vivo.  Cancer Res. 2002;  62 6270-6277
  • 75 Koblinski J E, Kaplan-Singer B R, VanOsdol S J. et al . Endogenous osteonectin/SPARC/BM-40 expression inhibits MDA-MB-231 breast cancer cell metastasis.  Cancer Res. 2005;  65 7370-7377
  • 76 Sage E H, Reed M, Funk S E. et al . Cleavage of the matricellular protein SPARC by matrix metalloproteinase 3 produces polypeptides that influence angiogenesis.  J Biol Chem. 2003;  278 37 849-37 857
  • 77 Kzhyshkowska J, Mamidi S, Gratchev A. et al . Novel stabilin-1 interacting chitinase-like protein (SI-CLP) is up-regulated in alternatively activated macrophages and secreted via lysosomal pathway.  Blood. 2006;  107 3221-3228
  • 78 Kornfeld S. Trafficking of lysosomal enzymes in normal and disease states.  J Clin Invest. 1986;  77 1-6
  • 79 Kornfeld S, Mellman I. The biogenesis of lysosomes.  Annu Rev Cell Biol. 1989;  5 483-525
  • 80 Jadot M, Canfield W M, Gregory W, Kornfeld S. Characterization of the signal for rapid internalization of the bovine mannose 6-phosphate/insulin-like growth factor-II receptor.  J Biol Chem. 1992;  267 11 069-11 077
  • 81 Traub L M, Kornfeld S. The trans-Golgi network: a late secretory sorting station.  Curr Opin Cell Biol. 1997;  9 527-533
  • 82 Ghosh P, Griffith J, Geuze H J, Kornfeld S. Mammalian GGAs act together to sort mannose 6-phosphate receptors.  J Cell Biol. 2003;  163 755-766
  • 83 Ghosh P, Dahms N M, Kornfeld S. Mannose 6-phosphate receptors: new twists in the tale.  Nat Rev Mol Cell Biol. 2003;  4 202-212
  • 84 Nakayama K, Wakatsuki S. The structure and function of GGAs, the traffic controllers at the TGN sorting crossroads.  Cell Struct Funct. 2003;  28 431-442
  • 85 Shiba T, Kawasaki M, Takatsu H. et al . Molecular mechanism of membrane recruitment of GGA by ARF in lysosomal protein transport.  Nat Struct Biol. 2003;  10 386-393
  • 86 Nogi T, Shiba Y, Kawasaki M. et al . Structural basis for the accessory protein recruitment by the gamma-adaptin ear domain.  Nat Struct Biol. 2002;  9 527-531
  • 87 Takatsu H, Yoshino K, Toda K, Nakayama K. GGA proteins associate with Golgi membranes through interaction between their GGAH domains and ADP-ribosylation factors.  Biochem J. 2002;  365 369-378
  • 88 Bonifacino J S. The GGA proteins: adaptors on the move.  Nat Rev Mol Cell Biol. 2004;  5 23-32
  • 89 Puertollano R, Aguilar R C, Gorshkova I, Crouch R J, Bonifacino J S. Sorting of mannose 6-phosphate receptors mediated by the GGAs.  Science. 2001;  292 1712-1716
  • 90 Doray B, Ghosh P, Griffith J, Geuze H J, Kornfeld S. Cooperation of GGAs and AP-1 in packaging MPRs at the trans-Golgi network.  Science. 2002;  297 1700-1703
  • 91 Zhu Y, Doray B, Poussu A, Lehto V P, Kornfeld S. Binding of GGA2 to the lysosomal enzyme sorting motif of the mannose 6-phosphate receptor.  Science. 2001;  292 1716-1718
  • 92 Sasaki C, Yokoyama A, Itoh Y. et al . Comparative study of the reaction mechanism of family 18 chitinases from plants and microbes.  J Biochem (Tokyo). 2002;  131 557-564
  • 93 Boot R G, Blommaart E F, Swart E. et al . Identification of a novel acidic mammalian chitinase distinct from chitotriosidase.  J Biol Chem. 2001;  276 6770-6778
  • 94 Renkema G H, Boot R G, Au F L. et al . Chitotriosidase, a chitinase, and the 39-kDa human cartilage glycoprotein, a chitin-binding lectin, are homologues of family 18 glycosyl hydrolases secreted by human macrophages.  Eur J Biochem. 1998;  251 504-509
  • 95 Boot R G, Renkema G H, Strijland A, vanZonneveld A J, Aerts J M. Cloning of a cDNA encoding chitotriosidase, a human chitinase produced by macrophages.  J Biol Chem. 1995;  270 26 252-26 256
  • 96 Renkema G H, Boot R G, Muijsers A O, Donker-Koopman W E, Aerts J M. Purification and characterization of human chitotriosidase, a novel member of the chitinase family of proteins.  J Biol Chem. 1995;  270 2198-2202
  • 97 Fusetti F, Moeller H von, Houston D. et al . Structure of human chitotriosidase. Implications for specific inhibitor design and function of mammalian chitinase-like lectins.  J Biol Chem. 2002;  277 25 537-25 544
  • 98 Renkema G H, Boot R G, Strijland A. et al . Synthesis, sorting, and processing into distinct isoforms of human macrophage chitotriosidase.  Eur J Biochem. 1997;  244 279-285
  • 99 Sundler R. Lysosomal and cytosolic pH as regulators of exocytosis in mouse macrophages.  Acta Physiol Scand. 1997;  161 553-556
  • 100 Naucler C, Sundler R, Tapper H. Dexamethasone lowers cytosolic pH in macrophages by altering alkalinizing pH-regulatory mechanisms.  J Leukoc Biol. 2000;  67 876-884
  • 101 Aerts J M, Hollak C E, Boot R G, Groener J E, Maas M. Substrate reduction therapy of glycosphingolipid storage disorders.  J Inherit Metab Dis. 2006;  29 449-456
  • 102 Rehli M, Niller H H, Ammon C. et al . Transcriptional regulation of CHI3L1, a marker gene for late stages of macrophage differentiation.  J Biol Chem. 2003;  278 44 058-44 067
  • 103 Welch J S, Escoubet-Lozach L, Sykes D B. et al . TH2 cytokines and allergic challenge induce Ym1 expression in macrophages by a STAT6-dependent mechanism.  J Biol Chem. 2002;  277 42 821-42 829
  • 104 Hu B, Trinh K, Figueira W F, Price P A. Isolation and sequence of a novel human chondrocyte protein related to mammalian members of the chitinase protein family.  J Biol Chem. 1996;  271 19 415-19 420
  • 105 Boven L A, van Meurs M, Boot R G. et al . Gaucher cells demonstrate a distinct macrophage phenotype and resemble alternatively activated macrophages.  Am J Clin Pathol. 2004;  122 359-369
  • 106 Krause S W, Rehli M, Kreutz M. et al . Differential screening identifies genetic markers of monocyte to macrophage maturation.  J Leukoc Biol. 1996;  60 540-545
  • 107 Nio J, Fujimoto W, Konno A. et al . Cellular expression of murine Ym1 and Ym2, chitinase family proteins, as revealed by in situ hybridization and immunohistochemistry.  Histochem Cell Biol. 2004;  121 473-482
  • 108 Raes G, de Baetselier P, Noel W. et al . Differential expression of FIZZ1 and Ym1 in alternatively versus classically activated macrophages.  J Leukoc Biol. 2002;  71 597-602
  • 109 Chang N C, Hung S I, Hwa K Y. et al . A macrophage protein, Ym1, transiently expressed during inflammation is a novel mammalian lectin.  J Biol Chem. 2001;  276 17 497-17 506
  • 110 Nair M G, Gallagher I J, Taylor M D. et al . Chitinase and Fizz family members are a generalized feature of nematode infection with selective upregulation of Ym1 and Fizz1 by antigen-presenting cells.  Infect Immun. 2005;  73 385-394
  • 111 Chupp G L, Lee C G, Jarjour N. et al . A chitinase-like protein in the lung and circulation of patients with severe asthma.  N Engl J Med. 2007;  357 2016-2027
  • 112 Zhu Z, Zheng T, Homer R J. et al . Acidic mammalian chitinase in asthmatic Th2 inflammation and IL-13 pathway activation.  Science. 2004;  304 1678-1682
  • 113 Nishikawa K C, Millis A J. gp38k (CHI3L1) is a novel adhesion and migration factor for vascular cells.  Exp Cell Res. 2003;  287 79-87
  • 114 Owhashi M, Arita H, Hayai N. Identification of a novel eosinophil chemotactic cytokine (ECF-L) as a chitinase family protein.  J Biol Chem. 2000;  275 1279-1286
  • 115 Kronborg G, Ostergaard C, Weis N. et al . Serum level of YKL-40 is elevated in patients with Streptococcus pneumoniae bacteremia and is associated with the outcome of the disease.  Scand J Infect Dis. 2002;  34 323-326
  • 116 Ostergaard C, Johansen J S, Benfield T, Price P A, Lundgren J D. YKL-40 is elevated in cerebrospinal fluid from patients with purulent meningitis.  Clin Diagn Lab Immunol. 2002;  9 598-604
  • 117 Steenbakkers P G, Baeten D, Rovers E. et al . Localization of MHC class II/human cartilage glycoprotein-39 complexes in synovia of rheumatoid arthritis patients using complex-specific monoclonal antibodies.  J Immunol. 2003;  170 5719-5727
  • 118 Vind I, Johansen J S, Price P A, Munkholm P. Serum YKL-40, a potential new marker of disease activity in patients with inflammatory bowel disease.  Scand J Gastroenterol. 2003;  38 599-605
  • 119 Tran A, Benzaken S, Saint-Paul M C. et al . Chondrex (YKL-40), a potential new serum fibrosis marker in patients with alcoholic liver disease.  Eur J Gastroenterol Hepatol. 2000;  12 989-93
  • 120 Saitou Y, Shiraki K, Yamanaka Y. et al . Noninvasive estimation of liver fibrosis and response to interferon therapy by a serum fibrogenesis marker, YKL-40, in patients with HCV-associated liver disease.  World J Gastroenterol. 2005;  11 476-481
  • 121 Shackel N A, McGuinness P H, Abbott C A, Gorrell M D, McCaughan G W. Novel differential gene expression in human cirrhosis detected by suppression subtractive hybridization.  Hepatology. 2003;  38 577-588
  • 122 La Montagna G, D'Angelo S, Valentini G. Cross-sectional evaluation of YKL-40 serum concentrations in patients with systemic sclerosis. Relationship with clinical and serological aspects of disease.  J Rheumatol. 2003;  30 2147-2151
  • 123 Hogdall E V, Johansen J S, Kjaer S K. et al . High plasma YKL-40 level in patients with ovarian cancer stage III is related to shorter survival.  Oncol Rep. 2003;  10 1535-1538
  • 124 Kucur M, Isman F K, Balci C. et al . Serum YKL-40 levels and chitotriosidase activity as potential biomarkers in primary prostate cancer and benign prostatic hyperplasia.  Urol Oncol. 2008;  26 47-52
  • 125 Cintin C, Johansen J S, Christensen I J. et al . High serum YKL-40 level after surgery for colorectal carcinoma is related to short survival.  Cancer. 2002;  95 267-274
  • 126 Jensen B V, Johansen J S, Price P A. High levels of serum HER-2/neu and YKL-40 independently reflect aggressiveness of metastatic breast cancer.  Clin Cancer Res. 2003;  9 4423-4434
  • 127 Schmidt H, Johansen J S, Gehl J. et al . Elevated serum level of YKL-40 is an independent prognostic factor for poor survival in patients with metastatic melanoma.  Cancer. 2006;  106 1130-1139
  • 128 Schmidt H, Johansen J S, Sjoegren P. et al . Serum YKL-40 predicts relapse-free and overall survival in patients with American Joint Committee on Cancer stage I and II melanoma.  J Clin Oncol. 2006;  24 798-804
  • 129 Tanwar M K, Gilbert M R, Holland E C. Gene expression microarray analysis reveals YKL-40 to be a potential serum marker for malignant character in human glioma.  Cancer Res. 2002;  62 4364-4368
  • 130 Sekine T, Masuko-Hongo K, Matsui T. et al . Recognition of YKL-39, a human cartilage related protein, as a target antigen in patients with rheumatoid arthritis.  Ann Rheum Dis. 2001;  60 49-54
  • 131 Tsuruha J, Masuko-Hongo K, Kato T. et al . Autoimmunity against YKL-39, a human cartilage derived protein, in patients with osteoarthritis.  J Rheumatol. 2002;  29 1459-1466
  • 132 Du H, Masuko-Hongo K, Nakamura H. et al . The prevalence of autoantibodies against cartilage intermediate layer protein, YKL-39, osteopontin, and cyclic citrullinated peptide in patients with early-stage knee osteoarthritis: evidence of a variety of autoimmune processes.  Rheumatol Int. 2005;  26 35-41
  • 133 Steck E, Breit S, Breusch S J, Axt M, Richter W. Enhanced expression of the human chitinase 3-like 2 gene (YKL-39) but not chitinase 3-like 1 gene (YKL-40) in osteoarthritic cartilage.  Biochem Biophys Res Commun. 2002;  299 109-115
  • 134 Knorr T, Obermayr F, Bartnik E, Zien A, Aigner T. YKL-39 (chitinase 3-like protein 2), but not YKL-40 (chitinase 3-like protein 1), is up regulated in osteoarthritic chondrocytes.  Ann Rheum Dis. 2003;  62 995-998
  • 135 Sakata M, Masuko-Hongo K, Tsuruha J. et al . YKL-39, a human cartilage-related protein, induces arthritis in mice.  Clin Exp Rheumatol. 2002;  20 343-350
  • 136 Kzhyshkowska J, Gratchev A, Goerdt S. Human chitinases and chitinase-like proteins as indicators for inflammation and cancer.  Biomarker Insights. 2007;  2 128-146
  • 137 Gratchev A, Schmuttermaier C, Mamidi S, Gooi L, Goerdt S, Kzhyshkowska J. Expression of osteoarthritis marker YKL-39 is stimulated by transforming growth factor beta (TGF-beta) and IL-4 in differentiating macrophages.  Biomarker Insights. 2008;  3 39-44

PD Dr. Julia Kzhyshkowska

Klinik für Dermatologie, Allergologie und Venerologie
Medizinische Fakultät Mannheim
der Universität Heidelberg
Universitätsklinikum Mannheim

Theodor-Kutzer-Ufer 1-3
68167 Mannheim

Email: julia.kzhyshkowska@haut.ma.uni-heidelberg.de