Semin Thromb Hemost 2007; 33(7): 621-642
DOI: 10.1055/s-2007-991530
© Thieme Medical Publishers

The Role of Hemostatic System Inhibitors in Malignancy

Marek Z. Wojtukiewicz1 , 2 , Ewa Sierko1 , 2 , Walter Kisiel3
  • 1Department of Oncology, Medical University, Bialystok, Poland
  • 2Comprehensive Cancer Center, Bialystok, Poland
  • 3Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
Further Information

Publication History

Publication Date:
14 November 2007 (online)

ABSTRACT

Malignancy is associated with alterations in the hemostatic system that present as thromboembolic or bleeding complications. Antineoplastic treatment further escalates blood coagulation and fibrinolytic abnormalities. Moreover, hemostatic system inhibitors play a role in tissue maintenance or, contrarily, contribute to cancer progression. The inhibitors regulate migration, proliferation, apoptosis, angiogenesis, and distant metastases formation, as well as interfere with host defense system mechanisms. They exhibit different functions depending on tumor type, histologic grade, and clinical stage of the disease. The activity of coagulation inhibitors underlies the pathomechanisms of some complications resulting from therapeutic procedures, such as radiation injury to normal tissues. Because coagulation activation is widely recognized to influence cancer growth and distant dissemination, numerous attempts were made to introduce various forms of coagulation inhibitors to antineoplastic treatment. This review summarizes up-to-date information on preclinical and clinical benefits and pitfalls of hemostatic system inhibitors administration in cancer, with special emphasis on tumor biology and prophylaxis and treatment of various complications observed in the course of malignant disease.

REFERENCES

  • 1 Callander N, Rapaport S I. Trousseau's syndrome.  West J Med. 1993;  158 364-371
  • 2 Naschitz J E, Yeshurun D, Lev L M. Thromboembolism in cancer.  Cancer. 1993;  71 1384-1390
  • 3 Hillen H FP. Thrombosis in cancer patients.  Ann Oncol. 2000;  11(Suppl 3) 273-276
  • 4 Bick R L. Coagulation abnormalities in malignancy: a review.  Semin Thromb Hemost. 1992;  18 353-372
  • 5 Barnes J, Patel V, Lee M. Adenocarcinoma of the colon presenting with a Sister Mary Joseph's nodule and Trousseau's syndrome.  Cutis. 1995;  56 270-272
  • 6 Zacharski L R, Wojtukiewicz M Z, Costantini V, Ornstein D L, Memoli V A. Pathways of coagulation/fibrinolysis activation in malignancy.  Semin Thromb Hemost. 1992;  18 104-116
  • 7 Zacharski L R, Costantini V, Wojtukiewicz M Z, Memoli V A, Kudryk B J. Anticoagulants as cancer therapy.  Semin Oncol. 1990;  17 217-227
  • 8 Lindahl A K, Sandset P M, Abildgaard U, Adersson T R, Harbitz T B. High plasma levels of extrinsic pathway inhibitor and low levels of other coagulation inhibitors in advanced cancer.  Acta Chir Scand. 1989;  155 389-393
  • 9 Lindahl A K, Odegaard O R, Sandset P M, Harbitz T B. Coagulation inhibition and activation in pancreatic cancer. Changes during progress of disease.  Cancer. 1992;  70 2067-2072
  • 10 Falanga A, Ofosu F A, Dalaini F et al.. The hypercoagulable state in cancer patients: evidence for impaired thrombin inhibitions.  Blood Coagul Fibrinolysis. 1994;  5(Suppl 1) S19-S23
  • 11 Gerlach R, Scheuer T, Bohm M et al.. Increased levels of plasma tissue factor pathway inhibitor in patients with glioblastoma and intracerebral metastases.  Neurol Res. 2003;  25 335-338
  • 12 Radziwon P, Schenk J F, Mazgajska K et al.. Tissue factor (TF) and inhibitor (TFPI) concentrations in patients with urinary tract tumors and haematological malignancies. [in Polish].  Pol Merkur Lekarski.. 2002;  13 308-311
  • 13 Beecken W D, Bentas W, Engels K et al.. Reduced plasma levels of coagulation factors in relation to prostate cancer.  Prostate. 2002;  53 160-167
  • 14 Iversen L H, Okholm M, Thorlacius-Ussing O O. Pre- and postoperative state of coagulation and fibrinolysis in plasma of patients with benign and malignant colorectal disease - a preliminary study.  Thromb Haemost. 1996;  76 523-528
  • 15 Erman M, Abali H, Oran B et al.. Tamoxifen-induced tissue factor pathway inhibitor reduction: a clue for an acquired thrombophilic state?.  Ann Oncol. 2004;  15 1622-1626
  • 16 Bushman J E, Palmeri D, Whinna H C, Church F C. Insight into the mechanism of asparaginase-induced depletion of antithrombin III in treatment of childhood acute lymphoblastic leukemia.  Leuk Res. 2000;  24 559-565
  • 17 Noda K, Wada H, Yamada N et al.. Changes of hemostatic molecular markers after gynecological surgery.  Clin Appl Thromb Hemost. 2000;  6 197-201
  • 18 Lee J H, Lee K H, Kim S et al.. Relevance of protein C and S, antithrombin III, von Willebrand factor, and factor VII for the development of hepatic veno-occlusive disease in patients undergoing allogenic bone marrow transplantation: a prospective study.  Bone Marrow Transplant. 1998;  22 883-888
  • 19 Park Y D, Yasui M, Yoshimoto T et al.. Changes in hemostatic parameters in hepatic veno-occlusive disease following bone marrow transplantation.  Bone Marrow Transplant. 1997;  19 915-920
  • 20 Nürnberger W, Michelmann I, Burdach S, Göbel U. Endothelial dysfunction after bone marrow transplantation: increase of soluble thrombomodulin and PAI-1 in patients with multiple transplant-related complications.  Ann Hematol. 1998;  76 61-65
  • 21 Matsumoto T, Wada H, Nishiyama H et al.. Hemostatic abnormalities and changes following bone marrow transplantation.  Clin Appl Thromb Hemost. 2004;  10 341-350
  • 22 Broze Jr G J. Tissue factor pathway inhibitor.  Thromb Haemost. 1995;  74 90-93
  • 23 Lindahl A K, Abildgaard U, Stokke G. Release of extrinsic pathway inhibitor after heparin injection: increased response in cancer patients.  Thromb Res. 1990;  59 651-656
  • 24 Iversen N, Lindahl A K, Abildgaard U. Elevated plasma levels of the factor Xa-TFPI complex in cancer patients.  Thromb Res. 2002;  105 33-36
  • 25 Amirkhoshravi A, Meyer T, Chang J-Y, Amaya M, Siddiqui H, Francis J L. Tissue factor pathway inhibitor reduces experimental lung metastases of B16 melanoma.  Thromb Haemost. 2002;  87 930-936
  • 26 Hembrough T A, Swartz G M, Papathanassiu A et al.. Tissue factor/factor VIIa inhibitors block angiogenesis and tumor growth through a nonhemostatic mechanism.  Cancer Res. 2003;  63 2997-3000
  • 27 Bromberg M E, Konigsberg W H, Madison J F, Pawashe A, Garen A. Tissue factor promotes metastasis by a pathway independent of blood coagulation.  Proc Natl Acad Sci USA. 1995;  92 8205-8209
  • 28 Müller B M, Ruf W. Requirement for binding of catalytically active factor VIIa in tissue factor dependent experimental metastasis.  J Clin Invest. 1998;  101 1372-1378
  • 29 Tang D G, Honn K V. Adhesion molecules and tumor metastasis: an update.  Invasion Metastasis. 1994-95;  14 109-122
  • 30 Honn K V, Tang G T, Chen Y Q. Platelets and cancer metastasis: more than an epiphenomenon.  Semin Thromb Hemost. 1992;  18 392-415
  • 31 Donnelly K M, Bromberg M E, Milstone A et al.. Ancylostoma caninum anticoagulant peptide blocks metastasis in vivo and inhibits factor Xa binding to melanoma cells in vitro.  Thromb Haemost. 1998;  79 1041-1047
  • 32 Chachinian A P, Propert K J, Ware J H et al.. A randomized trial of anticoagulation with warfarin and of alternating chemotherapy in extensive small-cell lung cancer by the Cancer and Leukemia Group B.  J Clin Oncol. 1989;  7 993-1002
  • 33 Hejna M, Raderer M, Zielinsky C C. Inhibition of metastasis by anticoagulants.  J Natl Cancer Inst. 1999;  91 22-36
  • 34 Lebeau B, Chastang C, Brechot J M et al.. Subcutaneous heparin treatment increases survival in small-cell lung cancer.  Cancer. 1994;  74 38-45
  • 35 Wojtukiewicz M Z, Kozłowski L, Ostrowska K, Dmitruk A, Zacharski L R. Low molecular heparin treatment for malignant melanoma: a pilot clinical trial.  Thromb Haemost. 2003;  89 405-407
  • 36 Zacharski L R, Henderson W G, Rickles F R et al.. Effect of warfarin anticoagulation on survival in carcinoma of the lung, colon, head and neck, and prostate.  Cancer. 1984;  53 2046-2052
  • 37 Kakkar A K, Levine M N, Kadziola Z et al.. Low molecular weight heparin, therapy with dalteparin, and survival in advanced cancer: the fragmin advanced malignancy outcome study (FAMOUS).  J Clin Oncol. 2004;  22 1944-1948
  • 38 Mousa S A, Linhardt R, Francis J, Amirkhosravi A. Anti-metastatic effect of a non-anticoagulant low-molecular-weight heparin versus the standard low-molecular-weight heparin, enoxaparin.  Thromb Haemost. 2006;  96 816-821
  • 39 Wojtukiewicz M Z, Sierko E, Rak J. Contribution of the hemostatic system to angiogenesis in cancer.  Semin Thromb Hemost. 2004;  30 5-20
  • 40 Wojtukiewicz M Z, Sierko E, Klement P, Rak J. The hemostatic system and angiogenesis in malignancy.  Neoplasia. 2001;  3 371-384
  • 41 Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other diseases.  Nat Med. 1995;  1 27-31
  • 42 Shoji M, Abe K, Nawroth P P et al.. Molecular mechanisms linking thrombosis and angiogenesis in cancer.  Trends Cardiovasc Med. 1997;  7 52-59
  • 43 Ott I, Fischer E G, Miyagi Y et al.. A role for tissue factor in cell adhesion and migration mediated by interaction with actin-binding protein 280.  J Cell Biol. 1998;  140 1241-1253
  • 44 Belting M, Dorrell M I, Sandgren S et al.. Regulation of angiogenesis by tissue factor cytoplasmic domain signaling.  Nat Med. 2004;  10 502-509
  • 45 Ahamed J, Belting M, Ruf W. Regulation of tissue factor-induced signaling by endogenous and recombinant tissue factor pathway inhibitor 1.  Blood. 2005;  105 2384-2391
  • 46 Amirkhosravi A, Meyer T, Desai H et al.. TFPI carboxy-terminal peptide exhibits anticoagulant activity and suppresses proliferation of melanoma and endothelial cells.  Blood. 2001;  98 66b
  • 47 Werling R W, Zacharski L R, Kisiel W, Bajaj S P, Memoli V A, Rousseau S A. Distribution of tissue factor pathway inhibitor in normal and malignant human tissues.  Thromb Haemost. 1993;  69 366-369
  • 48 Sierko E, Zawadzki R J, Zimnoch L, Sulkowski S, Wojtukiewicz M Z. Expression of blood coagulation inhibitors in colon cancer.  , [in Polish] Pol Merkur Lekarski. 2006;  20 462-467
  • 49 Wojtukiewicz M Z, Rucińska M, Zacharski L R et al.. Localization of blood coagulation factors in situ in pancreatic carcinoma.  Thromb Haemost. 2001;  86 1416-1420
  • 50 Wojtukiewicz M Z, Sierko E, Zacharski L R, Zimnoch L, Kudryk B, Kisiel B. Tissue factor-dependent coagulation activation and impaired fibrinolysis in situ in gastric cancer.  Semin Thromb Hemost. 2003;  29 291-299
  • 51 Wojtukiewicz M Z, Zacharski L R, Rucińska M et al.. Expression of tissue factor and tissue factor pathway inhibitor in situ in laryngeal carcinoma.  Thromb Haemost. 1999;  82 1659-1662
  • 52 Sierko E, Sawicki Z, Butkiewicz A, Zimnoch L, Kisiel W, Wojtukiewicz M. TFPI (tissue factor pathway inhibitor) is present in breast cancer tumor.  , [abstract] Blood. 2006;  108 4035
  • 53 Kurer M A. Protein and mRNA expression of tissue factor pathway inhibitor-1 (TFPI-1) in breast, pancreatic and colorectal cancer cells.  Mol Biol Rep. 2006; (abst); 
  • 54 Sevinsky J R, Rao L VM, Ruf W. Ligand-induced protease receptor translocation into caveolae: a mechanism for regulating cell surface proteolysis of the tissue factor-dependent coagulation pathway.  J Cell Biol. 1996;  133 293-304
  • 55 Ruf W, Müller B M. Tissue factor in cancer angiogenesis and metastasis.  Curr Opin Hematol. 1996;  3 379-384
  • 56 Ruf W, Müller B M. Tissue factor signaling.  Thromb Haemost. 1999;  82 175-182
  • 57 Wojtukiewicz M Z, Zacharski L R, Memoli V A et al.. Abnormal regulation of coagulation/fibrinolysis in small cell carcinoma of the lung.  Cancer. 1990;  65 481-485
  • 58 Wojtukiewicz M Z, Zacharski L R, Memoli V A et al.. Indirect activation of blood coagulation in colon cancer.  Thromb Haemost. 1989;  62 1062-1066
  • 59 Fischer E G, Riewald M, Huang H Y et al.. Tumor cell adhesion and migration supported by interaction of a receptor-protease complex with its inhibitor.  J Clin Invest. 1999;  104 1213-1221
  • 60 Ruf W, Seftor E A, Petrovan R J et al.. Differential role of tissue factor pathway inhibitors 1 and 2 in melanoma vasculogenic mimicry.  Cancer Res. 2003;  63 5381-5389
  • 61 Sprecher C A, Kisiel W, Mathews S, Foster D C. Molecular cloning, expression, and partial characterization of a second tissue-factor-pathway-inhibitor.  Proc Natl Acad Sci USA. 1994;  91 3353-3357
  • 62 Peterson L C, Sprecher C A, Foster D C, Blumberg H, Hamamoto T, Kisiel W. Inhibitory properties of a novel human Kunitz-type protease inhibitor homologous to tissue factor pathway inhibitor.  Biochemistry. 1996;  35 266-272
  • 63 Kisiel W, Sprecher C A, Foster D C. Evidence that a second tissue factor pathway inhibitor (TFPI-2) and placental protein 5 are equivalent.  Blood. 1994;  84 4384-4385
  • 64 Chand H S, Schmidt A E, Bajaj S P, Kisiel W. Structure-function analysis of the reactive site in the first Kunitz-type domain of human factor pathway inhibitor-2.  J Biol Chem. 2004;  279 17500-17507
  • 65 Bohn H, Winckler W. Isolierung und Charakterisierung des Plazenta-Proteins PP5.  Arch Gynaek. 1977;  223 179-186
  • 66 Siiteri J E, Koistinen H AT, Salem H AT, Bohn H, Seppaelae M. Placental protein 5 is related to blood coagulation and fibrinolytic systems.  Life Sci. 1982;  30 1885-1891
  • 67 Meisser A, Bischof P, Bohn H. Placental protein 5 (PP5) inhibits thrombin-induced coagulation of fibrinogen.  Arch Gynecol. 1985;  236 197-201
  • 68 Miyagi Y, Koshikawa N, Yasumitsu H et al.. cDNA cloning and mRNA expression of a serine proteinase inhibitor secreted by cancer cells: identification as placental protein 5 and tissue factor pathway inhibitor-2.  J Biochem (Tokyo). 1994;  116 939-942
  • 69 Iino M, Foster D C, Kisiel W. Quantification and characterization of human endothelial cell-derived tissue factor pathway inhibitor-2.  Arterioscler Thromb Vasc Biol. 1998;  18 40-46
  • 70 Wahlstroem T, Bohn H, Seppaelae M. Immunohistochemical demonstration of placental protein 5 (PP5) - like material in the seminal vesicles and the ampullar part of vas deferens.  Life Sci. 1982;  31 2723-2725
  • 71 Wojtukiewicz M Z, Sierko E, Zimnoch L, Kozłowski L, Sulkowski S, Kisiel W. Immunohistochemical localization of tissue factor pathway inhibitor-2 in human tumor tissue.  Thromb Haemost. 2003;  90 140-146
  • 72 Rollin J, Régina S, Vourc'h P et al.. Influence of MMP-2 and MMP-9 promoter polymorphisms on gene expression and clinical outcome of non-small cell lung cancer.  Lung Cancer. 2007;  56 273-280
  • 73 Rollin J, Iochmann S, Bléchet C et al.. Expression and methylation status of tissue factor pathway inhibitor-2 gene in non-small-cell lung cancer.  Br J Cancer. 2005;  92 775-783
  • 74 Wong C M, Ng Y L, Lee J M et al.. Tissue factor pathway inhibitor-2 as a frequently silenced tumor suppressor gene in hepatocellular carcinoma.  Hepatology. 2007;  45 1129-1138
  • 75 Rao C N, Lakka S S, Kin Y et al.. Expression of tissue factor pathway inhibitor 2 inversely correlates during the progression of human gliomas.  Clin Cancer Res. 2001;  7 570-576
  • 76 Sato N, Parker A R, Fukushima N et al.. Epigenetic inactivation of TFPI-2 as a mechanism associated with growth and invasion of pancreatic ductal adenocarcinoma.  Oncogene. 2005;  24 850-858
  • 77 Udagawa K, Miyagi Y, Hirahara F et al.. Specific expression of PP5/TFPI-2 mRNA by syncytiotrophoblasts in human placenta as revealed by in situ hybridization.  Placenta. 1998;  19 217-223
  • 78 Izumi H, Takahashi C, Oh J, Noda M. Tissue factor pathway inhibitor-2 suppresses the production of active matrix metalloproteinase-2 and is down-regulated in cells harboring activated ras oncogene.  FEBS Lett. 2000;  481 3136
  • 79 Saito E, Okamoto A, Saito M et al.. Genes associated with the genesis of leiomyoma of the uterus in a commonly deleted chromosomal region at 7q22.  Oncol Rep. 2005;  13 469-472
  • 80 Dong J T. Chromosomal deletions and tumor suppressor genes in prostate cancer.  Cancer Metastasis Rev. 2001;  20 173-193
  • 81 Sell S M, Tullis C, Stracner D, Song C Y, Gewin J. Minimal interval defined on 7q in uterine leiomyoma.  Cancer Genet Cytogenet. 2005;  157 67-69
  • 82 Nobeyama Y, Okochi-Takada E, Furuta J et al.. Silencing of tissue factor pathway inhibitor-2 gene in malignant melanomas.  Int J Cancer. 2007;  121 301-307
  • 83 Steiner F A, Hong J A, Fischette M R et al.. Sequential 5-aza 2'-deoxycytidine/depsipeptide FK228 treatment induces tissue factor pathway inhibitor 2 (TFPI-2) expression in cancer cells.  Oncogene. 2005;  24 2386-2397
  • 84 Konduri S D, Srivenugopal K S, Yanamandra N et al.. Promoter methylation and silencind of the tissue factor pathway inhibitor-2 (TFPI-2), a gene encoding an inhibitor of matrix metalloproteinases in human gliomas cells.  Oncogene. 2003;  22 4509-4516
  • 85 Jiang P, Watanabe H, Okada G et al.. Diagnostic utility of aberrant methylation of tissue factor pathway inhibitor 2 in pure pancreatic carcinoma.  Cancer Sci. 2006;  97 1267-1272
  • 86 Rao C N, Segawa T, Navari J R et al.. Methylation of TFPI-2 gene is not the sole cause of its silencing.  Int J Oncol. 2003;  22 843-848
  • 87 Kempaiah P, Chand H S, Kisiel W. Identification of a human TFPI-2 slice variant that is upregulated in human tumor tissue.  Mol Cancer. 2007;  6 20-31
  • 88 Torres-Collado A X, Kisiel W, Iruela-Arispe M L, Rodriguez-Manzaneque J C. ADAMTS1 interacts with, cleaves, and modifies the extracellular location of the matrix inhibitor tissue factor pathway inhibitor-2.  J Biol Chem. 2006;  281 17827-17837
  • 89 Jin M, Udagawa K, Miyagi E et al.. Expression of serine proteinase inhibitor PP5/TFPI-2/MSPI decreases the invasive potential of human choriocarcinoma cells in vitro and in vivo.  Gynecol Oncol. 2001;  83 325-333
  • 90 Lakka S S, Konduri S D, Mohanam S, Nicolson G L, Rao J S. In vitro modulation of human lung cancer cell line invasiveness by antisense cDNA of tissue factor pathway inhibitor-2.  Clin Exp Metastasis. 2000;  18 239-244
  • 91 Konduri S D, Rao C N, Chandrasekar N et al.. A novel function of tissue factor pathway inhibitor-2 (TFPI-2) in human glioma invasion.  Oncogene. 2001;  20 6938-6945
  • 92 Rao C N, Cook B, Liu Y et al.. HT-1080 fibrosarcoma cell matrix degradation and invasion are inhibited by the matrix-associated serine protease inhibitor TFPI-2/33 kDa MSPI.  Int J Cancer. 1998;  76 749-756
  • 93 Konduri S D, Tasiou A, Chandrasekar N, Rao J S. Overexpression of tissue factor pathway inhibitor-2 (TFPI-2) decreases the invasiveness of prostate cancer cells in vitro.  Int J Oncol. 2001;  18 127-131
  • 94 Konduri S D, Tasiou A, Chandrasekar N, Nicolson G L, Rao J S. Role of tissue factor pathway inhibitor-2 (TFPI-2) in amelanotic melanoma (C-32) invasion.  Clin Exp Metastasis. 2000;  18 303-308
  • 95 Carroll V, Binder B. The role of the plasminogen activation system in cancer.  Semin Thromb Hemost. 1999;  25 183-197
  • 96 Siiteri J E, Koistinen H AT, Salem H AT, Bohn H, Seppaelae M. Placental protein 5 is related to blood coagulation and fibrinolytic systems.  Life Sci. 1982;  30 1885-1891
  • 97 Rao C N, Mohanam S, Puppala A, Rao J S. Regulation of pro-MMP-1 and pro-MMP-3 activation by tissue factor pathway inhibitor-2/matrix associated serine protease inhibitor.  Biochem Biophys Res Commun. 1999;  255 94-98
  • 98 Herman M P, Sukhova G K, Kisiel W et al.. Tissue factor pathway inhibitor-2 is a novel inhibitor of matrix metalloproteinases with implications for atherosclerosis.  J Clin Invest. 2001;  107 1117-1126
  • 99 Du X, Chand H S, Kisiel W. Human tissue factor pathway inhibitor-2 does not bind or inhibit activated matrix metalloproteinase-1.  Biochim Biophys Acta. 2003;  1621 242-245
  • 100 Kondraganti S, Gondi C S, Gujrati M et al.. Restoration of tissue factor patway inhibitor inhibits invasion and trumor growth in vitro and in vivo a malignant meningioma cell line.  Int J Oncol. 2006;  29 25-32
  • 101 Sun Y, Xie M, Liu M, Jin D, Li P. Growth suppression of human laryngeal squamous cell carcinoma by adenovirus-mediated tissue factor pathway inhibitor gene 2.  Laryngoscope. 2006;  116 596-601
  • 102 Tasiou A, Konduri S D, Yanamandra N et al.. A novel role of tissue factor pathway inhibitor-2 in apoptosis of malignant human gliomas.  Int J Oncol. 2001;  19 591-597
  • 103 George J, Gondi C S, Dinh D H, Gujrati M, Rao J S. Restoration of tissue factor patway inhibitor-2 in a human glioblastoma cell line triggers caspase-mediated pathway and apoptosis.  Clin Cancer Res. 2007;  13 3507-3517
  • 104 Shoji M, Hancock W W, Abe K et al.. Activation of blood coagulation and angiogenesis in cancer.  Am J Pathol. 1998;  152 399-411
  • 105 Rao L VM. Tissue factor as a tumor procoagulant.  Cancer Metastasis Rev. 1992;  11 249-266
  • 106 Neaud V, Hisaka T, Monvoisin A et al.. Paradoxical pro-invasive effect of the serine proteinase inhibitor tissue factor pathway inhibitor-2 on human hepatocellular carcinoma cells.  J Biol Chem. 2000;  275 35565-35569
  • 107 Yanamandra N, Kondraganti S, Gondi C S et al.. Recombinant adeno-associated virus (rAAV) expressing TFPI-2 inhibits invasion, angiogenesis and tumor growth in a human glioblastoma cell line.  Int J Cancer. 2005;  115 998-1005
  • 108 Ivanciu L, Gerard R D, Tang H, Lupu F, Lupu C. Adenovirus-mediated expression of tissue factor pathway inhibitor-2 inhibits endothelial cell migration and angiogenesis.  Arterioscler Thromb Vasc Biol. 2007;  27 310-316
  • 109 Xu Z, Maiti D, Kisiel W, Duh E L. Tissue factor pathway inhibitor-2 is up-regulated by vascular endothelial growth factor and suppresses growth factor-induced proliferation of endothelial cells.  Arterioscler Thromb Vasc Biol. 2006;  26 2819-2825
  • 110 Ruf W, Seftor E A, Petrovan R J et al.. Differential role of tissue factor pathway inhibitors 1 and 2 in melanoma vasculogenic mimicry.  Cancer Res. 2003;  63 5381-5389
  • 111 Han X, Fiehler R, Broze Jr G J. Characterization of the protein Z-dependent protease inhibitor.  Blood. 2000;  96 3049-3055
  • 112 Ichinose A, Takeya H, Espling E, Iwanaga S, Kisiel W, Davie E W. Amino acid sequence of human protein Z, a vitamin K-dependent plasma glycoprotein.  Biochem Biophys Res Commun. 1990;  172 1139-1144
  • 113 Sierko E, Tokajuk P, Ramlau R et al.. Immunohistochemical localization of protein Z (ZP) and protein Z-dependent protease inhibitor (ZPI) in situ in human malignant tumors.  [abstract] J Thromb Haemost. 2005;  3(Suppl 1) P0718
  • 114 Sierko E, Wojtukiewicz M Z, Tokajuk P et al.. Expression of protein Z (PZ) and protein Z-dependent protease inhibitor (ZPI) in situ in human malignant tissues [abstract].  Blood. 2005;  106 1028
  • 115 Sierko E, Ramlau R, Zimnoch L, Broze G J, Wojtukiewicz M. Expression of protein Z-dependent protease inhibitor (ZPI) in situ in different malignant tumors [abstract].  Blood. 2004;  104 3959
  • 116 Sierko E, Tokajuk P, Ramlau R, Zimnoch L, Kisiel W, Wojtukiewicz M. Localization of protein Z (PZ) in situ in human neoplastic tissues.  , [abstract] Blood. 2004;  104 3958
  • 117 Roemisch J, Gray E, Hoffmann J N, Wiedermann C J. Antithrombin: a new look at the actions of a serine protease inhibitor.  Blood Coagul Fibrinolysis. 2002;  13 657-670
  • 118 Wojtukiewicz M Z, Rucińska M, Kloczko J, Dib A, Galar M. Profiles of plasma serpins in patients with advanced malignant melanoma, gastric cancer and breast cancer.  Haemostasis. 1998;  28 7-13
  • 119 Andersen B S, Rahr H B, Sørensen J V. Determination of coagulation inhibitor levels and resistance to activated protein C in patients undergoing gastric surgery for benign and malignant disorders.  Haemostasis. 1997;  27 157-162
  • 120 Honegger H, Anderson N, Hewitt L A, Tullis J L. Antithrombin III profiles in malignancy, relationship between primary tumors and metastatic sites.  Thromb Haemost. 1981;  46 500-503
  • 121 Onizuka K, Migita S, Yamada H, Matsumoto I. Serum protein fractions in patients with laryngeal cancer undergoing radiation therapy. Possibility as a prognostic factor.  , [in Japanese] [abstract] Fukuoka Igaku Zasshi. 1999;  90 46-58
  • 122 Unsal E, Atalay F, Atikcan S, Yilmaz A. Prognostic significance of hemostatic parameters in patients with lung cancer.  Respir Med. 2004;  98 93-98
  • 123 Bartoloni C, Guidi L, Tricerri A et al.. Latent coagulation disorders evaluated by the assay of plasma thrombin-antithrombin III complex in a large series of ‘solid tumors’.  Oncology. 1992;  49 426-430
  • 124 Ozyilkan O, Baltali E, Ozdemir O, Tekuzman G, Kirazli S, Firat D. Haemostatic changes; plasma levels of alpha2-antiplasmin-plasmin complex and thrombin-antithrombin III complex in female breast cancer.  Tumori. 1998;  84 364-367
  • 125 Wojtukiewicz M Z, Tang T G, Ciarelli J J et al.. Thrombin increases the metastatic potential of tumor cell.  Int J Cancer. 1993;  54 793-806
  • 126 Wojtukiewicz M Z, Tang T G, Nelson K K, Walz D A, Diglio C A, Honn K V. Thrombin enhances tumor cell adhesive and metastatic properties via increased αIIbß3 expression on the cell surface.  Thromb Res. 1992;  68 233-245
  • 127 Sierko E, Wojtukiewicz M Z. Platelets and angiogenesis in malignancy.  Semin Thromb Hemost. 2004;  30 95-108
  • 128 O'Reilly M S, Pirie-Shepherd S, Lane W S, Folkman J. Antiangiogenic activity of the cleaved conformation of the serpin antithrombin.  Science. 1999;  285 1926-1928
  • 129 Falanga A, Rickles F R. Patophysiology of the thrombophilic state in the cancer patient.  Semin Thromb Hemost. 1999;  25 173-182
  • 130 Esmon C T. Inflammation and the activated protein C anticoagulant pathway.  Semin Thromb Hemost. 2006;  32(suppl 1) 49-60
  • 131 Esmon C T. Role of coagulation inhibitors in inflammation.  Thromb Haemost. 2001;  86 51-56
  • 132 Esmon C T. The endothelial cell protein C receptor.  Thromb Haemost. 2000;  83 639-643
  • 133 Ellis C N, Boggs H W, Slagle G W, Cole P A, Coyle D J, Blakemore W S. Protein C activity, stage of disease, and vascular thrombosis in colon carcinoma.  Am J Surg. 1992;  163 78-81
  • 134 Green D, Maliekel K, Sushko E, Akhtar R, Soff G A. Activated-protein-C resistance in cancer patients.  Haemostasis. 1997;  27 112-118
  • 135 De Lucia D, De Francesco F, Marotta R et al.. Phenotypic APC resistance as a marker of hypercoagulability in primitive cerebral lymphoma.  Exp Oncol. 2005;  27 159-161
  • 136 De Lucia D, De Vita F, Orditura M et al.. Hypercoagulable state in patients with advanced gastrointestinal cancer: evidence for an acquired resistance to activated protein C.  Tumori. 1997;  83 948-952
  • 137 Paspatis G A, Sfyridaki A, Papanikolaou N et al.. Resistance to activated protein C, factor V leiden and the prothrombin G20210A variant in patients with colorectal cancer.  Pathophysiol Haemost Thromb. 2002;  32 2-7
  • 138 Nijziel M R, van Oerle R, Christella M et al.. Acquired resistance to activated protein C in breast cancer patients.  Br J Haematol. 2003;  120 117-122
  • 139 Elice F, Fink L, Tricot G, Barlogie B, Zangari M. Acquired resistance to activated protein C (APCR) in multiple myeloma is a transitory abnormality associated with an increased risk of venous thromboembolism.  Br J Haematol. 2006;  134 399-405
  • 140 Wojtukiewicz M Z, Zacharski L R, Memoli V A et al.. Malignant melanoma. Interaction with coagulation and fibrinolysis pathways in situ.  Am J Clin Pathol. 1990;  93 516-521
  • 141 Wojtukiewicz M Z, Zacharski L R, Memoli V A et al.. Fibrin formation on vessel walls in hyperplastic and malignant prostate tissue.  Cancer. 1991;  67 1377-1381
  • 142 Nijziel M R, van Oerle R, van Pampus E C, de Vet H C, Hillen H F, Hamulyák K. Increased D-dimer levels correlate with binding of activated protein C, but not tissue factor expression, on peripheral blood monocytes in cancer patients.  Am J Hematol. 2000;  64 282-286
  • 143 Cheng T, Liu D, Griffin J H et al.. Activated protein C blocks p53-mediated apoptosis in ischemic human brain endothelium and is neuroprotective.  Nat Med. 2003;  9 338-342
  • 144 Feistritzer C, Riewald M. Endothelial barrier protection by activated protein C through PAR-1-dependent sphingosine1-phosphate receptor-1 crossactivation.  Blood. 2005;  105 3178-3184
  • 145 Guo H, Liu D, Gelbard H et al.. Activated protein C prevents neuronal apoptosis via protease activated receptors 1 and 2.  Neuron. 2004;  41 563-572
  • 146 Wojtukiewicz M Z, Tang T G, Ben-Josef E, Renaud C, Walz D A, Honn K V. Solid tumor cells express functional “tethered ligand” thrombin receptor.  Cancer Res. 1995;  55 698-704
  • 147 Darmoul D, Gratio V, Devaud H, Lehy T, Laburthe M. Aberrant expression and activation of the thrombin receptor protease-activated receptor-1 cell induces cell proliferation and motility in human colon cancer cells.  Am J Pathol. 2003;  162 1503-1513
  • 148 Black P C, Mize G J, Karlin P et al.. Overexpression of protease-activated receptors-1,-2, and-4 (PAR-1, -2, and -4) in prostate cancer.  Prostate. 2007;  67 743-756
  • 149 Kaufmann R, Rahn S, Pollrich K et al.. Thrombin-mediated hepatocellular carcinoma cell migration: cooperative action via proteinase-activated receptors 1 and 4.  J Cell Physiol. 2007;  211 699-707
  • 150 Beaulieu L M, Church F C. Activated protein C promotes breast cancer cell migration through interactions with EPCR and PAR-1.  Exp Cell Res. 2007;  313 677-687
  • 151 Granovsky-Grisaru S, Zaidoun S, Grisaru D et al.. The pattern of protease activated receptor 1 (PAR1) expression in endometrial carcinoma.  Gynecol Oncol. 2006;  103 802-806
  • 152 Ghio P, Cappia S, Selvaggi G et al.. Prognostic role of protease-activated receptors 1 and 4 in resected stage IB non-small-cell lung cancer.  Clin Lung Cancer. 2006;  7 395-400
  • 153 Bergmann S, Junker K, Henklein P, Hollenberg M D, Settmacher U, Kaufmann R. PAR-type thrombin receptors in renal carcinoma cells: PAR1-mediated EGFR activation promotes cell migration.  Oncol Rep. 2006;  15 889-893
  • 154 Massi D, Naldini A, Ardinghi C et al.. Expression of protease-activated receptors 1 and 2 in melanocytic nevi and malignant melanoma.  Hum Pathol. 2005;  36 676-685
  • 155 Zhang X, Hunt J L, Landsittel D P et al.. Correlation of protease-activated receptor-1 with differentiation markers in squamous cell carcinoma of the head and neck and its implication in lymph node metastasis.  Clin Cancer Res. 2004;  10 8451-8459
  • 156 Grisaru-Granovsky S, Salah Z, Maoz M, Pruss D, Beller U, Bar-Shavit R. Differential expression of protease activated receptor 1 (Par1) and pY397FAK in benign and malignant human ovarian tissue samples.  Int J Cancer. 2005;  113 372-378
  • 157 Rudroff C, Seibold S, Kaufmann R et al.. Expression of the thrombin receptor PAR-1 correlates with tumour cell differentiation of pancreatic adenocarcinoma in vitro.  Clin Exp Metastasis. 2002;  19 181-189
  • 158 Okamoto T, Nishibori M, Sawada K et al.. The effects of stimulating protease-activated receptor-1 and -2 in A172 human glioblastoma.  J Neural Transm. 2001;  108 125-140
  • 159 Even-Ram S, Uziely B, Cohen P et al.. Thrombin receptor overexpression in malignant and physiological invasion processes.  Nat Med. 1998;  4 909-914
  • 160 Pleyer L, Went P, Russ G et al.. Massive infiltration of bone marrow in colon carcinoma after treatment with activated protein C.  Wien Klin Wochenschr. 2007;  119 254-258
  • 161 Nguyen M, Arkell J, Jackson C J. Activated protein C directly activates human endothelial gelatinase A.  J Biol Chem. 2000;  275 9095-9098
  • 162 Papadopoulou S, Scorilas A, Arnogianaki N et al.. Expression of gelatinase-A (MMP-2) in human colon cancer and normal colon mucosa.  Tumour Biol. 2001;  22 383-389
  • 163 Juuti A, Lundin I, Nordling S, Louhimo J, Haglud C. Epithelial MMP-2 expression correlates with worse prognosis in pancreatic cancer.  Oncology. 2006;  71 61-68
  • 164 Patel B P, Shah S V, Shukla S N, Shah P M, Patel P S. Clinical significance of MMP-2 and MMP-9 in patients with oral cancer.  Head Neck. 2007;  29 564-572
  • 165 Wu C Y, Wu M S, Chen Y J et al.. Clinicopathological significance of MMP-2 and TIMP-2 genotypes in gastric cancer.  Eur J Cancer. 2007;  43 799-808
  • 166 Uchiba M, Okajima K, Oike Y et al.. Activated protein C induces endothelial cell proliferation by mitogen-activated protein kinase activation in vitro and angiogenesis in vivo.  Circ Res. 2004;  95 34-41
  • 167 Tsuneyoshi N, Fukudome K, Horiguchi S et al.. Expression and anticoagulant function of the endothelial cell protein C receptor (EPCR) in cancer cell lines.  Thromb Haemost. 2001;  85 356-361
  • 168 Scheffer G L, Flens M J, Hageman S, Izquierdo M A, Shoemaker R H, Scheper R J. Expression of the vascular endothelial cell protein C receptor in epithelial tumour cells.  Eur J Cancer. 2002;  38 1535-1542
  • 169 Wang X, Wang E, Kavanagh J J, Freedman S S. Ovarian cancer, the coagulation pathway, and inflammation.  J Transl Med. 2005;  3 25
  • 170 Suzuki K, Nishioka J, Hashimoto S. Protein C inhibitor. Purification from human plasma and characterization.  J Biol Chem. 1983;  258 163-168
  • 171 Sierko E, Tokajuk P, Zimnoch L, Wojtukiewicz M Z. The location of components of fibrinolytic system in laryngeal cancer.  , [in Polish] Pol Merkur Lekarski. 2003;  15 81-85
  • 172 Wakita T, Hayashi T, Nishioka J et al.. Regulation of carcinoma cell invasion by protein C inhibitor whose expression is decreases in renal cell carcinoma.  Int J Cancer. 2004;  108 516-523
  • 173 Castello R, Landete J M, Espana F et al.. Expression of plasminogen activator inhibitors type 1 and type 3 and urokinase plasminogen activator protein and mRNA in breast cancer.  Thromb Res. 2007;  120 753-762
  • 174 Ordonez N-G. Transitional cell carcinomas of the ovary and bladder are immunophenotypically different.  Histopathology. 2000;  36 433-438
  • 175 Ogawa H, Yonezawa S, Maruyama I et al.. Expression of thrombomodulin in squamous cell carcinoma of the lung: its relationship to lymph node metastasis and prognosis of the patients.  Cancer Lett. 2000;  149 95-103
  • 176 Hamatake M, Ishida T, Mitsudomi T, Akazawa K, Sugimachi K. Prognostic value and pathological correlation of thrombomodulin in squamous cell carcinoma of the human lung.  Clin Cancer Res. 1996;  2 763-766
  • 177 Tezuka Y, Yonezawa S, Maruyama I et al.. Expression of thrombomodulin in esophageal squamous cell carcinoma and its relationship to lymph node metastasis.  Cancer Res. 1995;  55 4196-4200
  • 178 Tamura A, Hebisawa A, Hayashi K et al.. Prognostic significance of thrombomodulin expression and vascular invasion in stage I squamous cell carcinoma of the lung.  Lung Cancer. 2001;  34 375-382
  • 179 Tabata M, Sugihara K, Yonezawa S, Yamashita S, Maruyma I. An immunihistochemical study of thrombomodulin in oral squamous cell carcinoma and its association with invasive and metastatic potential.  J Oral Pathol Med. 1997;  26 258-264
  • 180 Hernández Gaspar R, de los Toyos J R, Alvarez Marcos C, Riera J R, Sampedro A. Quatitative immunohistochemical analyses of the expression of the E-cadherin, thrombomodulin, CD44H and CD44v6 in primary tumours of the pharynx, larynx squamous cell carcinoma and their lymph node metastases.  Anal Cell Pathol. 1999;  18 183-190
  • 181 Kim S J, Shiba E, Ischi H et al.. Thrombomodulin is a new biological and prognostic marker for breast cancer: an Immunohistochemical study.  Anticancer Res. 1997;  17 2319-2323
  • 182 Hanly A M, Redmond M, Winter D C et al.. Thrombomodulin expression in colorectal carcinoma is protective and correlates with survival.  Br J Cancer. 2006;  94 1320-1325
  • 183 Wilhelm S, Schmitt M, Parkinson J, Kuhn W, Graeff H, Wilhelm O G. Thrombomodulin, a receptor for serine protease thrombin, is decreased in primary tumors and metastases but increased in ascitic fluids of patients with advanced ovarian cancer FIGO IIIc.  Int J Oncol. 1998;  13 645-651
  • 184 Oikawa T, Kushuhara M, Ischikawa S et al.. Production of endothelin-1 and thrombomodulin by human pancreatic canccer cells.  Br J Cancer. 1994;  69 1059-1064
  • 185 Wojtukiewicz M Z, Zimnoch L, Kloczko J et al.. Heterogeneous expression of endothelial cell-associated proteins in gliomas of different malignancy. In: Messmer K, Kübler WM 6th World Congress for Microcirculation. Bologna, Italy; Monduzzi Editore 1996: 1007-1010
  • 186 Maruno M, Yoshimine T, Isaka T, Kuroda R, Ischi H, Hayakawa T J. Expression of thrombolmodulin in astrocytomas of various malignancy and in gliotic and normal brains.  J Neurooncol. 1994;  19 155-160
  • 187 Furuta J, Kaneda A, Umebayashi Y, Otsuka F, Sugimura T, Ushijama T. Silencing of the thrombomodulin gene in human malignant melanoma.  Melanoma Res. 2005;  15 15-20
  • 188 Zhang Y, Weiler-Guettler H, Chen J et al.. Thrombomodulin modulates growth of tumor cells independent of its anticoagulant activity.  J Clin Invest. 1998;  101 1301-1309
  • 189 Huang H C, Shi G Y, Jiang S J et al.. Thrombomodulin-mediated cell adhesion: involvement of its lectin-like domain.  J Biol Chem. 2003;  278 46750-46759
  • 190 Matsushita Y, Yoshiie K, Imamura Y et al.. A subcloned human esophageal squamous cell carcinoma cell line with low thrombomodulin expression showed increased invasiveness compared with a high thrombomodulin - expressing clone -thrombomodulin as a possible candidate for an adhesion molecule of squamous cell carcinoma.  Cancer Lett. 1998;  127 195-201
  • 191 Suechiro T, Shimada M, Matsumata T, Taketomi A, Yamamoto K, Sugimachi K. Thrombomodulin inhibits intrahepatic spread in human hepatocellular carcinoma.  Hepatology. 1995;  21 1285-1290
  • 192 Iino S, Abeyama K, Kawahara K et al.. The antimetastatic role of thrombomodulin expression in islet cell-derived tumors and its diagnostic value.  Clin Cancer Res. 2004;  10 6179-6188
  • 193 Hosaka Y, Higuchi T, Tsamagari M, Ischi H. Inhibition of invasion and experimental metastasis of murine melanoma cells by human soluble thrombomodulin.  Cancer Lett. 2000;  161 231-240
  • 194 Hopewell J W, Calvo W, Jaenke R, Reinhold H S, Robbins M E, Whitehouse E M. Microvasculature and radiation damage.  Recent Results Cancer Res. 1993;  130 1-16
  • 195 Lyubimova N, Hopewell J W. Experimental evidence to support the hypothesis that damage to vascular endothelium plays the primary role in the development of late radiation - induced CNS injury.  Br J Radiol. 2004;  77 488-492
  • 196 Wang J, Zheng H, Ou X, Fink L M, Hauer-Jensen M. Deficiency of microvascular thrombomodulin and up-regulation of protease-activated receptor-1 in irradiaed rat intestine.  Am J Pathol. 2002;  160 2063-2072
  • 197 Wang J, Boerma M, Fu Q, Hauer-Jensen M. Significance of endothelial dysfunction in the pathogenesis of early and delayed radiation enteropathy.  World J Gastroenterol. 2007;  13 3047-3055
  • 198 Phillips D J, Greengard J S, Fernandez J A et al.. Protein S an antithrombotic factor, is synthesized and released by neural tumor cells.  J Neurochem. 1993;  61 344-347
  • 199 Wimmel A, Rohner I, Ramaswamy A et al.. Synthesis and secrection of the anticoagulant protein S and coexpression of the Tyro3 receptor in human lung carcinoma cells.  Cancer. 1999;  86 43-49
  • 200 Anderson H A, Maylock C A, Williams J A, Paweletz C P, Shu H, Shacter E. Serum-derived protein S binds to phosphatidilserine and stimulates the phagocytosis of apoptotic cells.  Nat Immunol. 2003;  4 87-91
  • 201 Rezaie A R, Cooper S T, Church F C, Esmon C T. Protein C inhibitor is a potent inhibitor of thrombin-thrombomodulin complex.  J Biol Chem. 1995;  270 25336-25339
  • 202 Rezende S M, Simmonds R E, Lane D A. Coagulation, inflammation, and apoptosis: different roles for protein S and the protein S-C4b binding protein complex.  Blood. 2004;  103 1192-1201
  • 203 Heiring C, Dahlback B, Muller Y A. Ligand recognition and homophilic interactions in Tyro3: structural insights into the Axl/Tyro3 receptor tyrosine kinase family.  J Biol Chem. 2004;  279 6952-6958
  • 204 Lu Q, Lemke G. Homeostatic regulation of the immune system by receptor tyrosine kinases of the Tyro3 family.  Science. 2001;  293 306-311
  • 205 Tollefsen D M. Heparin cofactor II modulates the response to vascular injury.  Arterioscler Thromb Vasc Biol. 2007;  27 454-460
  • 206 Tollefsen D M. Heparin cofactor II deficiency.  Arch Pathol Lab Med. 2002;  126 1394-1400
  • 207 Kario K, Matsuo T, Kodama K, Katayama S, Kobayashi H. Preferential consumption of heparin cofactor II in disseminated intravascular coagulation associated with promyelocytic leukemia.  Thromb Res. 1992;  66 435-444
  • 208 Foekens J A, Peters H A, Look M P et al.. The urokinase system of plasminogen activation and prognosis in 2780 breast cancer patients.  Cancer Res. 2000;  60 635-643
  • 209 Okusa Y, Ichikura T, Mochzuki H. Prognostic impact of stromal cell-derived urokinase-type plasminogen activator in gastric carcinoma.  Cancer. 1999;  85 1033-1038
  • 210 Harvey S R, Sait S NJ, Xu I, Bailey J L, Penetrante R M, Marcus G. Demonstration of urokinase expression in cancer cells of colon adenocarcinomas by immunohistochemistry and in situ hybridization.  Am J Pathol. 1999;  155 1115-1120
  • 211 Oka T, Ishida T, Nishino T, Sugimachi K. Immunohistochemical evidence of urokinase-type plasminogen activator in primary and metastatic tumors of pulmonary adenocarcinoma.  Cancer Res. 1991;  51 3522-3525
  • 212 Evans C P, Elfman F, Parangi S, Conn M, Cuhna G, Shuman M A. Inhibition of protease cancer neovascularization and growth by urokinase-plasminogen activator receptor blockage.  Cancer Res. 1997;  57 3594-3599
  • 213 Kuhn W, Schmalfeld B, Reuning U et al.. Prognostic significance of urokinase (uPA) and its inhibitor PAI-1 for survival in advanced ovarian carcinoma stage FOGO IIIc.  Br J Cancer. 1999;  79 1746-1751
  • 214 de Witte J H, Sweep C G, Klijn J G et al.. Prognostic value of tissue-type plasminogen activator (tPA) and its complex with the type-1 inhibitor (PAI-1) in breast cancer.  Br J Cancer. 1999;  80 286-294
  • 215 Franks A J, Elis E. Immunohistochemical localization of tissue plasminogen activator in human brain tumors.  Br J Cancer. 1989;  59 463-466
  • 216 Bajou K, Noel A, Gerard R D et al.. Absence of host plasminogen activator inhibitor 1 prevents cancer invasion and vascularisation.  Nat Med. 1998;  4 923-927
  • 217 Carmeliet P, Moons L, Dewerchin M et al.. Insights in vessel development and vascular disorders using targeted inactivation and transfer of vascular endothelial growth factor, the tissue factor receptor, and plasminogen system.  Ann N Y Acad Sci. 1997;  811 191-206
  • 218 Heymans S, Luttun A, Nuyens D et al.. Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure.  Nat Med. 1999;  5 1135-1142
  • 219 Manders P, Tjan-Heijnen V C, Span P N et al.. Predictive impact of urokinase-type plasminogen activator: plasminogen activator inhibitor type-1 complex on the efficacy of adjuvant systemic therapy in primary breast cancer.  Cancer Res. 2004;  64 659-664
  • 220 Sumiyoshi K, Serizawa K, Urano T, Takada Y, Takada A, Baba S. Plasminogen activator system in human breast cancer.  Int J Cancer. 1992;  50 345-348
  • 221 Sakakibara T, Hibi K, Koike M et al.. Plasminogen activator inhibitor-1 as a potential marker for the malignancy of colorectal cancer.  Br J Cancer. 2005;  93 799-803
  • 222 Sakakibara T, Hibi K, Koike M et al.. Plasminogen activator inhibitor-1 as a potential marker for the malignancy of gastric cancer.  Cancer Sci. 2006;  97 395-399
  • 223 Sakakibara T, Hibi K, Kodera Y, Ito K, Akiyama S, Nakao A. Plasminogen activator inhibitor-1 as a potential marker for the malignancy of esophageal squamous cell carcinoma.  Clin Cancer Res. 2004;  10 1375-1378
  • 224 Nagayama M, Sato A, Hayakawa H, Urano T, Takada Y, Takada A. Plasminogen activators and their inhibitors in non-small cell lung cancer. Low content of type 2 plasminogen activator inhibitor associated with tumor dissemination.  Cancer. 1994;  73 1398-1405
  • 225 Hanekom G S, Stubbings H M, Kidson S H. The active fraction of plasmatic plasminogen activator inhibitor type 1 as a possible indicator of increased risk for metastatic melanoma.  Cancer Detect Prev. 2002;  26 50-59
  • 226 Whitley B R, Palmieri D, Twerdi C D, Church F C. Expression of active plasminogen activator inhibitor-1 reduces cell migration and invasion in breast and gynecological cancer cells.  Exp Cell Res. 2004;  296 151-162
  • 227 Friedl P, Bröcker E B. The biology of cell locomotion within three-dimensional extracellular matrix.  Cell Mol Life Sci. 2000;  57 41-64
  • 228 Estreicher A, Muhlhauser J, Carpentier J L, Orci L, Vassalli J D. The receptor for urokinase type plasminogen activator polarizes expression of the protease to the leading edge of migrating monocytes and promotes degradation of enzyme inhibitor complexes.  J Cell Biol. 1990;  111 783-792
  • 229 Nykjaer A, Conese M, Christensen E I et al.. Recycling of the urokinase receptor upon internalization of the u-PA: serpin complexes.  EMBO J. 1997;  16 2610-2620
  • 230 Wei Y, Waltz D A, Rao N et al.. Identification of the urokinase receptor as an adhesion receptor for vitronectin.  J Biol Chem. 1994;  269 32380-32388
  • 231 Deng G, Curriden S A, Hu G, Czekay R P, Loskutoff D J. Plasminogen activator inhibitor-1 regulates cell adhesion by binding to the somatomedin B domain of vitronect.  J Cell Physiol. 2001;  189 23-33
  • 232 Takahashi T, Suzuki K, Ihara H, Mogami H, Kazui T, Urano T. Plasminogen activator inhibitor type 1 promotes fibrosarcoma cell migration by modifying cellular attachment to vitronectin via alpha(v)beta(5) integrin.  Semin Thromb Hemost. 2005;  31 356-363
  • 233 Scherrer A, Kruithof E K, Grob J P. Plasminogen activator inhibitor-2 in patients with monocytic leukemia.  Leukemia. 1991;  5 479-486
  • 234 Borgfeldt C, Bendahl P O, Gustavsson B et al.. High tumor tissue concentration of urokinase plasminogen activator receptor is associated with good prognosis in patients with ovarian cancer.  Int J Cancer. 2003;  107 658-665
  • 235 Yoshino H, Endo Y, Watanabe Y, Sasaki T. Significance of plasminogen activator inhibitor 2 as a prognostic marker in primary lung cancer: association of decreased plasminogen activator inhibitor 2 with lymph node metastasis.  Br J Cancer. 1998;  78 833-839
  • 236 Zhao E, Han D, Yu Z, Fan E, Li Y, Zhou Z. Prognostic value of the urokinase-type plasminogen activator and its inhibitors in squamous cell carcinoma of human larynx.  Lin Chuang Er Bi Yan Hou Ke Za Zhi.. 2002;  16 599-602
  • 237 Nordengren J, Fredstorp Lidebring M, Bendahl P O et al.. High tumor tissue concentration of plasminogen activator inhibitor 2 (PAI-2) is an independent marker for shorter progression-free survival in patients with early stage endometrial cancer.  Int J Cancer. 2002;  97 379-385
  • 238 Foca C, Moses E K, Quinn M A, Rice G E. Differential mRNA expression of urokinase-type plasminogen activator, plasminogen activator receptor and plasminogen activator inhibitor type-2 in normal human endometria and endometrial carcinomas.  Gynecol Oncol. 2000;  79 244-250
  • 239 Osmak M, Babic D, Abramic M, Milicic D, Vrhovec I, Skrk J. Plasminogen activator inhibitor type 2: potential prognostic factor for endometrial carcinomas.  Neoplasma. 2001;  48 462-467
  • 240 Wojtukiewicz M Z, Sierko E, Zacharski L R, Rozanska-Kudelska M, Zimnoch L, Kisiel W. Occurence of components of fibrinolytic pathways in situ in laryngeal cancer.  Semin Thromb Hemost. 2003;  29 317-320
  • 241 Mueller B M, Yu Y B, Laug W E. Overexpression of plasminogen activator inhibitor 2 in human melanoma cells inhibits spontaneous metastasis in scid / scid mice.  Proc Natl Acad Sci USA. 1995;  92 205-209
  • 242 Laug W E, Cao X R, Yu Y B, Shimada H, Kruithof E K. Inhibition of invasion of HT1080 sarcoma cells expressing recombinant plasminogen activator inhibitor 2.  Cancer Res. 1993;  53 6051-6057
  • 243 Yu H, Maurer F, Medcalf R L. Plasminogen activator inhibitor type 2: a regulator of monocyte proliferation and differentiation.  Blood. 2002;  99 2810-2818
  • 244 Genton C, Kruithof E K, Schleuning W D. Phorbol ester induces the biosynthesis of glycosylated and nonglycosylated plasminogen activator inhibitor 2 in high excess over urokinase-type plasminogen activator in human U-937 lymphoma cells.  J Cell Biol. 1987;  104 705-712
  • 245 Medcalf R L, Kruithof E K, Schleuning W D. Plasminogen activator inhibitor 1 and 2 are tumor necrosis factor / cachectin-responsive genes.  J Exp Med. 1988;  168 751-759
  • 246 Darnell G A, Antalis T M, Johnstone R W et al.. Inhibition of retinoblastoma protein degradation by interaction with the serpin plasminogen activator inhibitor 2 via a novel consensus motif.  Mol Cell Biol. 2003;  23 6520-6532
  • 247 Dickinson J L, Bates E J, Ferrante A, Antalis T M. Plasminogen activator inhibitor type 2 inhibits tumor necrosis factor alpha-induced apoptosis. Evidence for an alternate biological function.  J Biol Chem. 1995;  270 27894-27904
  • 248 Dickinson J L, Norris B J, Jensen P H, Antalis T M. The C-D interhelical domain of the serpin plasminogen activator inhibitor-type 2 is required for protection from TNF-alpha induced apoptosis.  Cell Death Differ. 1998;  5 163-171
  • 249 Fish R J, Kruithof E K. Evidence for serpinB2-independent protection from TNF-alpha-induced apoptosis.  Exp Cell Res. 2006;  312 350-361
  • 250 Stief T W, Radtke K P, Heimburger N. Inhibition of urokinase by protein C-inhibitor (PCI). Evidence for identity of PCI and plasminogen activator inhibitor 3.  Biol Chem Hoppe Seyler. 1987;  368 1427-1433
  • 251 Crisp R J, Knauer M F, Knauer D J. Protease nexin 1 is a potent urinary plasminogen activator inhibitor in the presence of collagen type IV.  J Biol Chem. 2002;  277 47285-47291
  • 252 Rossignol P, Ho-Tin-Noe B, Vranckx R et al.. Protease nexin-1 inhibits plasminogen activation-induced apoptosis of adherent cells.  J Biol Chem. 2004;  279 10346-10356
  • 253 Buchholz M, Biebl A, Neesse A et al.. SERPINE2 (protease nexin I) promotes extracellular matrix production and local invasion of pancreatic tumors in vivo.  Cancer Res. 2003;  63 4945-4951
  • 254 Ozyilkan O, Baltali E, Ozdemir O, Tekuzman G, Kirazli S, Firat D. Haemostatic changes; plasma levels of alpha2-antiplasmin-plasmin complex and thrombin-antithrombin III complex in female breast cancer.  Tumori. 1998;  84 364-367
  • 255 Taguchi O, Gabazza E C, Yoshida M, Yamakami T, Kobayashi H, Shima T. High plasma level of plasmin-alpha 2-plasmin inhibitor complex is predictor of poor prognosis in patients with lung cancer.  Clin Chim Acta. 1996;  244 69-81
  • 256 Hayashido Y, Hamana T, Ishida Y, Shintani T, Koizumi K, Okamoto T. Induction of alpha2-antiplasmin inhibits E-cadherin processing mediated by the plasminogen activator/plasmin system, leading to suppression of progression of oral squamous cell carcinoma via upregulation of cell-cell adhesion.  Oncol Rep. 2007;  17 417-423
  • 257 Reijerkerk A, Voest E E, Gebbink M F. No grip, no growth: the conceptual basis of excessive proteolysis in the treatment of cancer.  Eur J Cancer. 2000;  36 1695-1705
  • 258 Meijers J C, Oudijk E J, Mosnier L O et al.. Reduced activity of TAFI (thrombin-activatable fibrinolysis inhibitor) in acute promyelocytic leukaemia.  Br J Haematol. 2000;  108 518-523
  • 259 Hataji O, Taguchi O, Gabazza E C et al.. Increased circulating levels of thrombin -acivatable fibrinolysis inhibitor in lung cancer patients.  Am J Hematol. 2004;  76 214-219
  • 260 Nakasaki T, Wada H, Shigemori C et al.. Expression of tissue factor and vascular endothelial growth factor is associated with angiogenesis in colorectal cancer.  Am J Hematol. 2002;  69 247-254
  • 261 Seto S, Onodera H, Kaido T et al.. Tissue factor expression in human colorectal carcinoma.  Cancer. 2000;  88 295-301
  • 262 Shigemori C, Wada H, Matsumoto K, Shiku H, Nakamura S, Suzuki H. Tissue factor expression and metastatic potential of colorectal cancer.  Thromb Haemost. 1998;  80 894-898
  • 263 Bromberg M E, Sundaram R, Homer R J, Garen A, Konigsberg W H. Role of tissue factor in metastasis: function of the cytoplasmic and extracellular domains of the molecule.  Thromb Haemost. 1999;  82 88-92
  • 264 Amirkhosravi A, Meyer T, Warnes G et al.. Pentoxyfilline inhibits hypoxia-induced upregulation of tumor cell tissue factor and vascular endothelial growth factor.  Thromb Haemost. 1998;  80 598-602
  • 265 Fenton II J W, Shen G X, Minnear F L et al.. Statins induce hypothrombotic states?.  Clin Appl Thromb Hemost. 2000;  6 18-21
  • 266 Rak J, Mitsuhashi Y, Sheehan C et al.. Oncogenes and tumor angiogenesis: differential modes of vascular endothelial growth factor up-regulation in ras-transformed epithelial cells and fibroblasts.  Cancer Res. 2000;  60 490-498
  • 267 Viloria-Petit A, Crombet T, Jothy S et al.. Acquired resistance to the antitumor effect of epidermal growth factor receptor-blocking antibodies in vivo: a role for altered tumor angiogenesis.  Cancer Res. 2001;  61 5090-5101
  • 268 Attoub S, Rivat C, Rodrigues S et al.. The c-kit tyrosine kinase inhibitor STI571 for colorectal cancer therapy.  Cancer Res. 2002;  62 4879-4883
  • 269 Fletcher L. Approval heralds new generation of kinase inhibitors?.  Nat Biotechnol. 2001;  19 599-600
  • 270 Russo P, Ottoboni C, Falugi C et al.. Cellular effects of a new farnesyltransferase inhibitor, RPR-115135, in a human isogenic colon cancer cell line model system HCT-116.  Ann N Y Acad Sci. 1999;  886 252-256
  • 271 Cirillo P, Golino P, Ragni M et al.. Long-lasting antithrombotic effects of a single dose of human recombinant, active site-blocked factor VII: insights into possible mechanism(s) of action.  J Thromb Haemost. 2003;  1 992-998
  • 272 Soderstrom T, Hedner U, Arnljots B. Active site-inactivated factor VIIa prevents thrombosis without increased surgical bleeding: topical and intravenous administration in a rat model of deep arterial injury.  J Vasc Surg. 2001;  33 1072-1079
  • 273 Rossi C, Hess S, Eckl R W et al.. Effect of MCM09, an active site-directed inhibitor of factor Xa, on B16-BL6 melanoma lung colonies in mice.  J Thromb Haemost. 2006;  4 608-613
  • 274 Tomaru T, Nakamura F, Miwa A Y et al.. Antithrombin and thrombolytic effect of a new antithrombin agent: angioscopic and angiographic comparison with heparin or batroxobin.  J Interv Cardiol. 1994;  7 409-419
  • 275 Sakuragi T, Sakao Y, Furukawa K et al.. Successful management of acute pulmonary embolism after surgery for lung cancer.  Eur J Cardiothorac Surg. 2003;  24 580-587
  • 276 Asanuma K, Wakabayashi H, Okuyama N et al.. Thrombin inhibitor, argatroban, prevents tumor cell migration and bone metastasis.  Oncology. 2004;  67 166-173
  • 277 Tsopanoglou N E, Maragoudakis M E. On the mechanism of thrombin-induced angiogenesis.  J Biol Chem. 1999;  274 23969-23976
  • 278 Tsopanoglou N E, Pipili-Synetos E, Maragoudakis M E. Thrombin promotes angiogenesis by a mechanism independent of fibrin formation.  Am J Physiol. 1993;  264 1302-1307
  • 279 Hua Y, Keep R F, Schallert T, Hoff J T, Xi G. A thrombin inhibitor reduces brain edema, glima mass and neurological deficits in a rat glioma model.  Acta Neurochir Suppl. 2003;  86 503-506
  • 280 Hua Y, Tang L L, Keep R F et al.. Systemic use of argatroban reduces tumor mass, attenuates neurological deficits and prolongs survival time in rat gliomas models.  Acta Neurochir Suppl. 2005;  95 403-406
  • 281 Hua Y, Tang L L, Keep R F et al.. The role of thrombin in gliomas.  J Thromb Haemost. 2005;  3 1917-1923
  • 282 Sarker K P, Biswas K K, Yamaji K et al.. Inhibition of thrombin-induced vascular endothelial growth factor production in human neuroblastoma (NB-1) cells by argatroban.  Pathophysiol Haemost Thromb. 2005;  34 41-47
  • 283 Gasic G J, Gasic T B, Steward C C. Antimetastatic effects associated with platelet reduction.  Proc Natl Acad Sci USA. 1968;  61 46-52
  • 284 Chiang H S, Swaim M W, Huang T F. The Arg-Gly-Asp-containing peptide, rhodostomin, inhibits in vitro cell adhesion to extracellular matrices and platelet aggregation caused by saos-2 human osteosarcoma cells.  Br J Cancer. 1995;  71 265-270
  • 285 Chiang H S, Swaim M W, Huang T F. Characterization of platelet aggregation induced by human breast carcinoma and its inhibition by snake venom peptides, trigramin and rhodostomin.  Breast Cancer Res Treat. 1995;  33 225-235
  • 286 Sheu J R, Lin C H, Pung H C, Teng C M, Huang T F. Triflavin, an Arg-Gly-Asp-containing peptide, inhibits tumor cell-induced platelet aggregation.  Jpn J Cancer Res. 1993;  84 1062-1071
  • 287 Borsig L, Wong R, Feramisco J et al.. Heparin and cancer revised: mechanistic connections involving platelets, P-selectin, carcinoma mucins, and tumor metastasis.  Proc Natl Acad Sci USA. 2001;  98 3352-3357
  • 288 Bernard G R, Margolis B D, Shanies H M et al.. Extended Evaluation of Recombinant Human Activated Protein C United States Investigators. Extended evaluation of recombinant human activated protein C United States Trial (ENHANCE US): a single-arm, phase 3B, multicenter study of drotrecogin alfa (activated) in sepsis.  Chest. 2004;  125 2206-2216
  • 289 Shi X, Gangedharan B, Brass L F, Ruf W, Mueller B M. Protease-activated receptors (PAR-1 and PAR-2) contribute to tumor cell motility and metastasis.  Mol Cancer Res. 2004;  2 395-402
  • 290 Zania P, Kritikou S, Flordellis C S, Maragoudakis M E, Tsopanoglou N E. Blockage of angiogenesis by small molecule antagonists to protease-activated receptor-1: association with endothelial cell growth suppression and induction of apoptosis.  J Pharmacol Exp Ther. 2006;  318 246-254
  • 291 Domiano B P, Derian C K, Maryanoff B E, Zhang H C, Gordon P A. RWJ-58259: a selective antagonists of protease activated receptor-1.  Cardiovasc Drug Rev. 2003;  21 313-326
  • 292 Engelberg H. Action of heparin that may effect the malignant process.  Cancer. 1999;  85 257-272
  • 293 Hull R D, Raskob G E, Pineo G F et al.. Subcutaneous low-molecular-weight-heparin compared with continuous intravenous heparin in the treatment of proximal-vein thrombosis.  N Engl J Med. 1992;  326 975-982
  • 294 Prandoni P, Lensing A WA, Büller H R et al.. Comparison of subcutaneous low-molecular-weight-heparin with intravenous standard heparin in proximal deep-vein thrombosis.  Lancet. 1992;  339 441-445
  • 295 Hirsh J, Siragusa S, Cosmi B, Ginsber J S. Low molecular weight heparins (LMWH) in the treatment of patients with acute venous thromboembolism.  Thromb Haemost. 1995;  74 360-363
  • 296 Siragusa S, Cosmi B, Piovella F, Hirsh J, Ginsberg J S. Low-molecular-weight-heparin and unfractionated heparin in the treatment of patients with acute venous thromboembolism.  Am J Med. 1996;  100 269-277
  • 297 Klerk C P, Smorenburg S M, Otten H M et al.. The effect of low molecular weight heparin on survival in patients with advanced malignancy.  J Clin Oncol. 2005;  23 2130-2135
  • 298 Altinbas M, Coskun H S, Er O et al.. A randomized clinical trial of combination chemotherapy with and without low molecular weight heparin in small cell lung cancer.  J Thromb Haemost. 2004;  2 1266-1271
  • 299 Lee A Y, Rickles F R, Julian J A et al.. Randomized comparison of low molecular weight heparin coumarin derivates on the survival of patients with cancer and venous thromboembolism.  J Clin Oncol. 2005;  23 2123-2129
  • 300 Vignoli A, Marchetti M, Balducci D, Barbui T, Falanga A. Differential effect of the low-molecular-weight heparin, dalteparin, and unfractionated heparin on microvascular endothelial cell hemostatic properties.  Haematologica. 2006;  91 207-214
  • 301 Mousa S A, Mohamed S. Inhibition of endothelial cell tube formation by the low molecular weight heparin, tinzaparin, is mediated by tissue factor pathway inibitor.  Thromb Haemost. 2004;  92 627-633
  • 302 Niers T M, Klerk C P, DiNisio M et al.. Mechanisms of heparin induced anti-cancer activity in experimental cancer models.  Crit Rev Oncol Hematol. 2007;  61 195-207
  • 303 Parish C R, Freeman C, Brown K J et al.. Identification of sulfated oligosaccharide-based inhibitors of tumor growth and metastasis using novel in vitro assays for angiogenesis and heparanase activity.  Cancer Res. 1999;  59 3433-3441
  • 304 Colin S, Jeanny J C, Mascarelli F et al.. In vivo involvement of heparan sulfate proteoglycan in the bioavailability, internalization, and catabolism of exogeneous basic fibroblast growth factor.  Mol Pharmacol. 1999;  55 74-82
  • 305 Schlessinger J, Lax I, Lemmon M. Regulation of growth factor activation by proteoglycans: what is the role of the low affinity receptors?.  Cell. 1995;  83 357-360
  • 306 Soker S, Goldstaub D, Svahn C M, Vlodavsky I, Levi B Z, Neufeld G. Variations in the size and sulfation of heparin modulate the effect of heparin on the binding of VEGF165 to its receptors.  Biochem Biophys Res Commun. 1994;  203 1339-1347
  • 307 Norrby K, Østergaard P. A 5.0-kD heparin fraction systemically suppresses VEGF165-mediated angiogenesis.  Int J Microcirc Clin Exp. 1997;  17 314-321
  • 308 Norrby K, Østergaard P. Basic fibroblast growt factor-mediated de novo angiogenesis is more effectively suppressed by low-molecular-wieght than high-molecular-weight heparin.  Int J Microcirc Clin Exp. 1996;  16 8-15
  • 309 Balzarotti M, Fontana F, Marras C et al.. In vitro study of low molecular weight heparin effect on cell growth and cell invasion in primary cell cultures of high-grade gliomas.  Oncol Res. 2006;  16 245-250
  • 310 Chopra H, Timar J, Rong X et al.. Is there a role for the tumor cell integrin αIIbß3 in tumor-cell induced platelet aggregation.  Clin Exp Metastasis. 1992;  10 125-137
  • 311 Coller B S. Anti-GpIIb/IIIa drugs: current strategies and future directions.  Thromb Haemost. 2001;  86 427-443
  • 312 Nierodzik M L, Klepfish A, Karpatkin S. Role of platelets, thrombin, integrin IIb-IIIa, fibronectin and von Willebrand factor on tumor adhesion in vitro and metastasis in vivo.  Thromb Haemost. 1995;  74 282-290
  • 313 Trikha M, Zhou Z, Timar J et al.. Multiple roles for platelet GPIIb/IIa and platelet alpha v beta 3 integrins in tumor growth, angiogenesis, and metastasis.  Cancer Res. 2002;  62 2824-2833
  • 314 Amirkhosravi A, Mousa S A, Amaya M et al.. Inhibition of tumor cell-induced platelet aggregation and lung metastasis by the oral GpIIb-IIIa antagonist XV454.  Thromb Haemost. 2003;  90 549-554
  • 315 Sheu J R, Lin C H, Chung Jl, Teng C M, Huang T F. Triflavin, an Arg-Gly-Asp containing snake venom peptide, inhibits aggregation of human platelets induced by human hepatoma cell line.  Thromb Res. 1992;  66 679-691
  • 316 Chiang H S, Swaim M W, Huang T F. Characterization of platelet aggregation induced by human colon adenocarcinoma cells and its inhibition by snake venom peptides, trigramin and rhodostomin.  Br J Haematol. 1994;  87 325-331
  • 317 Chiang H S, Swaim M W, Huang T F. The Arg-Gly-Asp-containing peptide, rhodostomin, inhibits in vitro cell adhesion to extracellular matrices and platelet aggregation caused by saos-2 human osteosarcoma cells.  Br J Cancer. 1995;  71 265-270
  • 318 Chiang H S, Swaim M W, Huang T F. Characterization of platelet aggregation induced by human breast carcinoma and its inhibition by snake venom peptides, trigramin and rhodostomin.  Breast Cancer Res Treat. 1995;  33 225-235
  • 319 Lever R, Page C P. Novel drug development opportunities for heparin.  Nat Rev Drug Discov. 2002;  1 140-148
  • 320 da Silva M S, Horton J A, Wijelath J M et al.. Heparin modulates integrin-mediated cellular adhesion: specificity of interaction with alpha and beta integrin subunits.  Cell Adhes Commun. 2003;  10 59-67
  • 321 Ludwig R J, Beohme B, Podda M et al.. Endothelial P-selectin as a target of heparin action in experimental melanoma lung metastasis.  Cancer Res. 2004;  64 2743-2750
  • 322 Wang J, Zheng H, Ou X et al.. Hirudin ameliorates intestinal radiation toxicity in the rat: support for thrombin inhibition as strategy to minimize side-effects after radiation therapy and as countermeasure against radiation exposure.  J Thromb Haemost. 2004;  2 2027-2035
  • 323 Glantz M J, Burger P C, Friedman A H, Radtke R A, Massey E W, Schold Jr S C. Treatment of radiation-induced nervous system injury with heparin and warfarin.  Neurology. 1994;  44 2020-2027
  • 324 Wang J, Zheng H, Qiu X, Kulkarni A, Fink L M, Hauer-Jansen M. Modulation of the intestinal response to ionizing radiation by anticoagulant and non-anticoagulant heparins.  Thromb Haemost. 2005;  94 1054-1059
  • 325 Wang J, Albertson C M, Zheng H, Fink L M, Herbert J M, Hauer-Jensen M. Short-term inhibition of ADP-induced platelet aggregation by clopidogrel ameliorates radiation-induced toxicity in rat small intestine.  Thromb Haemost. 2002;  87 122-128
  • 326 Akyurek S, Atahan L, Cengiz M et al.. Effect of ticlopidine in the prevention of radiation enteropathy.  Br J Radiol. 2006;  79 409-414
  • 327 Mouthon M A, Gaugler M H, Vandamme M, Gourmelon P, Wagemaker G, Van der Meeren A. Ticlopidine inhibits the prothrombotic effects of thrombopoietin and ameliorates survival after supralethal total body irradiation.  Thromb Haemost. 2002;  87 323-328

Dr. Marek Z Wojtukiewicz

Department of Oncology, Medical University

12 Ogrodowa St., 15-027 Bialystok, Poland

Email: m.wojtukiewicz@neostrada.pl

    >