Semin Liver Dis 2007; 27(4): 401-412
DOI: 10.1055/s-2007-991516
© Thieme Medical Publishers

Cholangiocyte Injury and Ductopenic Syndromes

Xuefeng Xia1 , Sharon DeMorrow2 , Heather Francis2 , Shannon Glaser2 , 4 , Gianfranco Alpini3 , 4 , Marco Marzioni5 , Giammarco Fava5 , Gene LeSage1
  • 1The University of Texas Houston Medical School, Houston, Texas
  • 2Division R&E, Scott & White Hospital, College of Medicine, Temple, Texas
  • 3Division Research, Central Texas Veterans Health Care System, Department of Medicine, Scott & White and The Texas A&M University System Health Science Center, College of Medicine, Temple, Texas
  • 4Systems Biology and Translational Medicine, The Texas A&M University System Health Science Center, College of Medicine, Temple, Texas
  • 5Department of Gastroenterology, Polytechnic University of Marche, Ancona, Italy
Further Information

Publication History

Publication Date:
02 November 2007 (online)

ABSTRACT

Cholangiopathies are characterized by a predominately bile duct-directed inflammatory response that leads to bile duct injury and, if the injury is persistent, bile duct loss and the chance of developing bile duct cancer (cholangiocarcinoma). Although the cholangiopathies have broad range of etiologies and pathogenesis (e.g., inherited disorders, autoimmune disorders, infections, drug-induced, ischemia, and unknown etiology), all share the common pathogenetic target-the biliary epithelial cell (cholangiocyte). For the most part, the pathogenesis of these diseases is poorly understood, which correspondingly has restricted clinicians to nonspecific and usually ineffective therapies for these disorders. Nevertheless, significant advances toward the understanding of the mechanisms involved in cholangiocyte-directed inflammation, biliary fibrosis, cholangiocyte death, and cholangiocarcinoma have unfolded over the past 15 years that may provide us new hopes and schemes for treatment of these disorders.

REFERENCES

  • 1 Crawford A R, Lin X Z, Crawford J M. The normal adult human liver biopsy: a quantitative reference standard.  Hepatology. 1998;  28 323-331
  • 2 Oda T, Elkahloun A G, Pike B L et al.. Mutations in the human Jagged1 gene are responsible for Alagille syndrome.  Nat Genet. 1997;  16 235-242
  • 3 Li L, Krantz I D, Deng Y et al.. Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for Notch1.  Nat Genet. 1997;  16 243-251
  • 4 Ehebauer M, Hayward P, Martinez-Arias A. Notch signaling pathway.  Sci STKE. 2006;  2006 cm7
  • 5 McCright B, Lozier J, Gridley T. A mouse model of Alagille syndrome: Notch2 as a genetic modifier of Jag1 haploinsufficiency.  Development. 2002;  129 1075-1082
  • 6 Bezerra J A. The next challenge in pediatric cholestasis: deciphering the pathogenesis of biliary atresia.  J Pediatr Gastroenterol Nutr. 2006;  43(suppl 1) S23-S29
  • 7 Riepenhoff-Talty M, Schaekel K, Clark H F et al.. Group A rotaviruses produce extrahepatic biliary obstruction in orally inoculated newborn mice.  Pediatr Res. 1993;  33(4 Pt 1) 394-399
  • 8 Gadsby D C, Vergani P, Csanady L. The ABC protein turned chloride channel whose failure causes cystic fibrosis.  Nature. 2006;  440 477-483
  • 9 Feranchak A P. Hepatobiliary complications of cystic fibrosis.  Curr Gastroenterol Rep. 2004;  6 231-239
  • 10 Feranchak A P, Sokol R J. Cholangiocyte biology and cystic fibrosis liver disease.  Semin Liver Dis. 2001;  21 471-488
  • 11 Beuers U. Drug insight: mechanisms and sites of action of ursodeoxycholic acid in cholestasis.  Nat Clin Pract Gastroenterol Hepatol.. 2006;  3 318-328
  • 12 Giorgini A, Selmi C, Invernizzi P, Podda M, Zuin M, Gershwin M E. Primary biliary cirrhosis: solving the enigma.  Ann N Y Acad Sci. 2005;  1051 185-193
  • 13 Mackay I R, Rowley M J. Autoimmune epitopes: autoepitopes.  Autoimmun Rev. 2004;  3 487-492
  • 14 Oertelt S, Lian Z X, Cheng C M et al.. Anti-mitochondrial antibodies and primary biliary cirrhosis in TGF-beta receptor II dominant-negative mice.  J Immunol. 2006;  177 1655-1660
  • 15 Wakabayashi K, Lian Z X, Moritoki Y et al.. IL-2 receptor alpha(-/-) mice and the development of primary biliary cirrhosis.  Hepatology. 2006;  44 1240-1249
  • 16 Irie J, Wu Y, Wicker L S et al.. NOD.c3c4 congenic mice develop autoimmune biliary disease that serologically and pathogenetically models human primary biliary cirrhosis.  J Exp Med. 2006;  203 1209-1219
  • 17 Rust C, Beuers U. Medical treatment of primary biliary cirrhosis and primary sclerosing cholangitis.  Clin Rev Allergy Immunol. 2005;  28 135-145
  • 18 Charatcharoenwitthaya P, Lindor K D. Primary sclerosing cholangitis: diagnosis and management.  Curr Gastroenterol Rep. 2006;  8 75-82
  • 19 Kim W R, Ludwig J, Lindor K D. Variant forms of cholestatic diseases involving small bile ducts in adults.  Am J Gastroenterol. 2000;  95 1130-1138
  • 20 O'Mahony C A, Vierling J M. Etiopathogenesis of primary sclerosing cholangitis.  Semin Liver Dis. 2006;  26 3-21
  • 21 Norris S, Kondeatis E, Collins R et al.. Mapping MHC-encoded susceptibility and resistance in primary sclerosing cholangitis: the role of MICA polymorphism.  Gastroenterology. 2001;  120 1475-1482
  • 22 Fickert P, Fuchsbichler A, Wagner M et al.. Regurgitation of bile acids from leaky bile ducts causes sclerosing cholangitis in Mdr2 (Abcb4) knockout mice.  Gastroenterology. 2004;  127 261-274
  • 23 Pauli-Magnus C, Kerb R, Fattinger K et al.. BSEP and MDR3 haplotype structure in healthy Caucasians, primary biliary cirrhosis and primary sclerosing cholangitis.  Hepatology. 2004;  39 779-791
  • 24 Gallegos-Orozco J F, Yurk C E, Wang N et al.. Lack of association of common cystic fibrosis transmembrane conductance regulator gene mutations with primary sclerosing cholangitis.  Am J Gastroenterol. 2005;  100 874-878
  • 25 Sheth S, Shea J C, Bishop M D et al.. Increased prevalence of CFTR mutations and variants and decreased chloride secretion in primary sclerosing cholangitis.  Hum Genet. 2003;  113 286-292
  • 26 Perez-Simon J A, Sanchez-Abarca I, Diez-Campelo M, Caballero D, San Miguel J. Chronic graft-versus-host disease: pathogenesis and clinical management.  Drugs. 2006;  66 1041-1057
  • 27 Demetris A J. Immune cholangitis: liver allograft rejection and graft-versus-host disease.  Mayo Clin Proc. 1998;  73 367-379
  • 28 Duarte R F, Delgado J, Shaw B E et al.. Histologic features of the liver biopsy predict the clinical outcome for patients with graft-versus-host disease of the liver.  Biol Blood Marrow Transplant. 2005;  11 805-813
  • 29 Beuers U, Rust C. Overlap syndromes.  Semin Liver Dis. 2005;  25 311-320
  • 30 Dominguez-Antonaya M, Coba-Ceballos J M, Gomez-Rubio M, de Cuenca B, Ortega-Munoz P, Garcia J. Idiopathic adulthood ductopenia: a diagnosis: two clinicopathologic courses.  J Clin Gastroenterol. 2000;  30 210-212
  • 31 Burak K W, Pearson D C, Swain M G, Kelly J, Urbanski S J, Bridges R J. Familial idiopathic adulthood ductopenia: a report of five cases in three generations.  J Hepatol. 2000;  32 159-163
  • 32 LeSage G D, Benedetti A, Glaser S et al.. Acute carbon tetrachloride feeding selectively damages large, but not small, cholangiocytes from normal rat liver.  Hepatology. 1999;  29 307-319
  • 33 Gaudio E, Barbaro B, Alvaro D et al.. Vascular endothelial growth factor stimulates rat cholangiocyte proliferation via an autocrine mechanism.  Gastroenterology. 2006;  130 1270-1282
  • 34 LeSage G D, Glaser S S, Marucci L et al.. Acute carbon tetrachloride feeding induces damage of large but not small cholangiocytes from BDL rat liver.  Am J Physiol. 1999;  276(5 Pt 1) G1289-G1301
  • 35 Lesage G, Glaser S, Ueno Y et al.. Regression of cholangiocyte proliferation after cessation of ANIT feeding is coupled with increased apoptosis.  Am J Physiol Gastrointest Liver Physiol. 2001;  281 G182-G190
  • 36 Alpini G, Ueno Y, Tadlock L et al.. Increased susceptibility of cholangiocytes to tumor necrosis factor-alpha cytotoxicity after bile duct ligation.  Am J Physiol Cell Physiol. 2003;  285 C183-C194
  • 37 Marzioni M, Alpini G, Saccomanno S et al.. Endogenous opioids modulate the growth of the biliary tree in the course of cholestasis.  Gastroenterology. 2006;  130 1831-1847
  • 38 LeSage G D, Glaser S, Marucci L et al.. Acute carbon tetrachloride feeding induces damage of large but not small cholangiocytes from bile duct ligated rat liver.  Am J Physiol. 1999;  276 G1289-G1301
  • 39 Alvaro D, Alpini G, Onori P et al.. Effect of ovariectomy on the proliferative capacity of intrahepatic rat cholangiocytes.  Gastroenterology. 2002;  123 336-344
  • 40 Glaser S, Alvaro D, Francis H et al.. Adrenergic receptor agonists prevent bile duct injury induced by adrenergic denervation by increased cAMP levels and activation of Akt.  Am J Physiol Gastrointest Liver Physiol. 2006;  290 G813-G826
  • 41 LeSage G, Alvaro D, Benedetti A et al.. Cholinergic system modulates growth, apoptosis and secretion of cholangiocytes from bile duct ligated rats.  Gastroenterology. 1999;  117 191-199
  • 42 Marzioni M, LeSage G D, Glaser S et al.. Taurocholate prevents the loss of intrahepatic bile ducts due to vagotomy in bile duct-ligated rats.  Am J Physiol Gastrointest Liver Physiol. 2003;  284 G837-G852
  • 43 Marzioni M, Glaser S, Francis H et al.. Autocrine/paracrine regulation of the growth of the biliary tree by the neuroendocrine hormone serotonin.  Gastroenterology. 2005;  128 121-137
  • 44 Gaudio E, Onori P, Pannarale L, Alvaro D. Hepatic microcirculation and peribiliary plexus in experimental biliary cirrhosis: a morphological study.  Gastroenterology. 1996;  111 1118-1124
  • 45 Canbay A, Friedman S, Gores G J. Apoptosis: the nexus of liver injury and fibrosis.  Hepatology. 2004;  39 273-278
  • 46 Gaudio E, Barbaro B, Alvaro D et al.. Administration of r-VEGF-A prevents hepatic artery ligation-induced bile duct damage in bile duct ligated rats.  Am J Physiol Gastrointest Liver Physiol. 2006;  291 G307-G317
  • 47 Bhathal P S, Gall J A. Deletion of hyperplastic biliary epithelial cells by apoptosis following removal of the proliferative stimulus.  Liver. 1985;  5 311-325
  • 48 Ueno Y, Ishii M, Yahagi K et al.. Fas-mediated cholangiopathy in the murine model of graft versus host disease.  Hepatology. 2000;  31 966-974
  • 49 Reynoso-Paz S, Coppel R L, Mackay I R, Bass N M, Ansari A A, Gershwin M E. The immunobiology of bile and biliary epithelium.  Hepatology. 1999;  30 351-357
  • 50 Vierling J, Braun M, Wang H. Immunopathogenesis of Vanishing Bile Duct Syndromes. Georgetown, TX; Eurekah.com/Landes Bioscience 2004
  • 51 Strazzabosco M, Fabris L, Spirli C. Pathophysiology of cholangiopathies.  J Clin Gastroenterol. 2005;  39(4 suppl 2) S90-S102
  • 52 Lazaridis K N, Strazzabosco M, Larusso N F. The cholangiopathies: disorders of biliary epithelia.  Gastroenterology. 2004;  127 1565-1577
  • 53 Ludwig J. The pathology of primary biliary cirrhosis and autoimmune cholangitis.  Best Pract Res Clin Gastroenterol. 2000;  14 601-613
  • 54 Vierling J M, Hu K-Q. Immunologic Mechanisms of Hepatobiliary Injury. Baltimore; Williams & Wilkins 1996
  • 55 Ludwig J. Histopathology of Primary Sclerosing Cholangitis. Boston; Kluwer Academic Publishers 1998
  • 56 Yeaman S J, Kirby J A, Jones D E. Autoreactive responses to pyruvate dehydrogenase complex in the pathogenesis of primary biliary cirrhosis.  Immunol Rev. 2000;  174 238-249
  • 57 Vierling J. Animal Models of Autoimmune Liver Diseases. Philadelphia; Hanley & Belfus 2002
  • 58 Palmer J M, Kirby J A, Jones D E. The immunology of primary biliary cirrhosis: the end of the beginning?.  Clin Exp Immunol. 2002;  129 191-197
  • 59 Afford S C, Ahmed-Choudhury J, Randhawa S et al.. CD40 activation-induced, Fas-dependent apoptosis and NF-kappaB/AP-1 signaling in human intrahepatic biliary epithelial cells.  FASEB J. 2001;  15 2345-2354
  • 60 Yamada G, Hyodo I, Tobe K et al.. Ultrastructural immunocytochemical analysis of lymphocytes infiltrating bile duct epithelia in primary biliary cirrhosis.  Hepatology. 1986;  6 385-391
  • 61 Si L, Whiteside T L, Schade R R, Starzl T E, Van Thiel D H. T-lymphocyte subsets in liver tissues of patients with primary biliary cirrhosis (PBC), patients with primary sclerosing cholangitis (PSC), and normal controls.  J Clin Immunol. 1984;  4 262-272
  • 62 Iwata M, Harada K, Hiramatsu K et al.. Fas ligand expressing mononuclear cells around intrahepatic bile ducts co-express CD68 in primary biliary cirrhosis.  Liver. 2000;  20 129-135
  • 63 Ayres R C, Neuberger J M, Shaw J, Joplin R, Adams D H. Intercellular adhesion molecule-1 and MHC antigens on human intrahepatic bile duct cells: effect of pro-inflammatory cytokines.  Gut. 1993;  34 1245-1249
  • 64 Spirli C, Fabris L, Duner E et al.. Cytokine-stimulated nitric oxide production inhibits adenylyl cyclase and cAMP-dependent secretion in cholangiocytes.  Gastroenterology. 2003;  124 737-753
  • 65 Liu Z, Sakamoto T, Ezure T et al.. Interleukin-6, hepatocyte growth factor, and their receptors in biliary epithelial cells during a type I ductular reaction in mice: interactions between the periductal inflammatory and stromal cells and the biliary epithelium.  Hepatology. 1998;  28 1260-1268
  • 66 Spirli C, Nathanson M H, Fiorotto R et al.. Proinflammatory cytokines inhibit secretion in rat bile duct epithelium.  Gastroenterology. 2001;  121 156-169
  • 67 Malhi H, Gores G J, Lemasters J J. Apoptosis and necrosis in the liver: a tale of two deaths?.  Hepatology. 2006;  43(2 suppl 1) S31-S44
  • 68 Terada T, Nakanuma Y. Detection of apoptosis and expression of apoptosis-related proteins during human intrahepatic bile duct development.  Am J Pathol. 1995;  146 67-74
  • 69 Guicciardi M E, Gores G J. Apoptosis: a mechanism of acute and chronic liver injury.  Gut. 2005;  54 1024-1033
  • 70 Baskin-Bey E S, Gores G J. Death by association: BH3 domain-only proteins and liver injury.  Am J Physiol Gastrointest Liver Physiol. 2005;  289 G987-G990
  • 71 Arnt C R, Chiorean M V, Heldebrant M P, Gores G J, Kaufmann S H. Synthetic Smac/DIABLO peptides enhance the effects of chemotherapeutic agents by binding XIAP and cIAP1 in situ.  J Biol Chem. 2002;  277 44236-44243
  • 72 Charlotte F, L'Hermine A, Martin N et al.. Immunohistochemical detection of bcl-2 protein in normal and pathological human liver.  Am J Pathol. 1994;  144 460-465
  • 73 Harada K, Nakanuma Y. Molecular mechanisms of cholangiopathy in primary biliary cirrhosis.  Med Mol Morphol. 2006;  39 55-61
  • 74 Koukoulis G K, Shen J, Karademir S, Jensen D, Williams J. Cholangiocytic apoptosis in chronic ductopenic rejection.  Hum Pathol. 2001;  32 823-827
  • 75 Batt A M, Ferrari L. Manifestations of chemically induced liver damage.  Clin Chem. 1995;  41(12 Pt 2) 1882-1887
  • 76 Ballardini G, Guidi M, Susca M et al.. Bile duct cell apoptosis is a rare event in primary biliary cirrhosis.  Dig Liver Dis. 2001;  33 151-156
  • 77 Fox C K, Furtwaengler A, Nepomuceno R R, Martinez O M, Krams S M. Apoptotic pathways in primary biliary cirrhosis and autoimmune hepatitis.  Liver. 2001;  21 272-279
  • 78 Harada K, Furubo S, Ozaki S, Hiramatsu K, Sudo Y, Nakanuma Y. Increased expression of WAF1 in intrahepatic bile ducts in primary biliary cirrhosis relates to apoptosis.  J Hepatol. 2001;  34 500-506
  • 79 Pusl T, Beuers U. Ursodeoxycholic acid treatment of vanishing bile duct syndromes.  World J Gastroenterol. 2006;  12 3487-3495
  • 80 Adams D H, Afford S C. Effector mechanisms of nonsuppurative destructive cholangitis in graft-versus-host disease and allograft rejection.  Semin Liver Dis. 2005;  25 281-297
  • 81 Yasoshima M, Kono N, Sugawara H, Katayanagi K, Harada K, Nakanuma Y. Increased expression of interleukin-6 and tumor necrosis factor-alpha in pathologic biliary epithelial cells: in situ and culture study.  Lab Invest. 1998;  78 89-100
  • 82 Harada K, Ozaki S, Gershwin M E, Nakanuma Y. Enhanced apoptosis relates to bile duct loss in primary biliary cirrhosis.  Hepatology. 1997;  26 1399-1405
  • 83 Combes B, Carithers Jr R L, Maddrey W C et al.. Biliary bile acids in primary biliary cirrhosis: effect of ursodeoxycholic acid.  Hepatology. 1999;  29 1649-1654
  • 84 Komichi D, Tazuma S, Nishioka T, Hyogo H, Une M, Chayama K. Unique inhibition of bile salt-induced apoptosis by lecithins and cytoprotective bile salts in immortalized mouse cholangiocytes.  Dig Dis Sci. 2003;  48 2315-2322
  • 85 Marzioni M, Francis H, Benedetti A et al.. Ca2 + -dependent cytoprotective effects of ursodeoxycholic and tauroursodeoxycholic acid on the biliary epithelium in a rat model of cholestasis and loss of bile ducts.  Am J Pathol. 2006;  168 398-409
  • 86 Higuchi H, Bronk S F, Takikawa Y et al.. The bile acid glycochenodeoxycholate induces trail-receptor 2/DR5 expression and apoptosis.  J Biol Chem. 2001;  276 38610-38618
  • 87 Benedetti A, Alvaro D, Bassotti C et al.. Cytotoxicity of bile salts against biliary epithelium: a study in isolated bile ductule fragments and isolated perfused rat liver.  Hepatology. 1997;  26 9-21
  • 88 Takikawa Y, Miyoshi H, Rust C et al.. The bile acid-activated phosphatidylinositol 3-kinase pathway inhibits Fas apoptosis upstream of bid in rodent hepatocytes.  Gastroenterology. 2001;  120 1810-1817
  • 89 Higuchi H, Miyoshi H, Bronk S F, Zhang H, Dean N, Gores G J. Bid antisense attenuates bile acid-induced apoptosis and cholestatic liver injury.  J Pharmacol Exp Ther. 2001;  299 866-873
  • 90 Yerushalmi B, Dahl R, Devereaux M W, Gumpricht E, Sokol R J. Bile acid-induced rat hepatocyte apoptosis is inhibited by antioxidants and blockers of the mitochondrial permeability transition.  Hepatology. 2001;  33 616-626
  • 91 Que F G, Phan V A, Phan V H, LaRusso N F, Gores G J. GUDC inhibits cytochrome c release from human cholangiocyte mitochondria.  J Surg Res. 1999;  83 100-105
  • 92 Yasoshima M, Tsuneyama K, Harada K, Sasaki M, Gershwin M E, Nakanuma Y. Immunohistochemical analysis of cell-matrix adhesion molecules and their ligands in the portal tracts of primary biliary cirrhosis.  J Pathol. 2000;  190 93-99
  • 93 Desmet V J. Vanishing bile duct disorders.  Prog Liver Dis. 1992;  10 89-121
  • 94 Desmet V, Roskams T, Van Eyken P. Ductular reaction in the liver.  Pathol Res Pract. 1995;  191 513-524
  • 95 Pinzani M. Cholestasis and fibrogenesis. In: Alpini G, Alvaro D, Marzioni M, LeSage G, LaRusso N The Pathobiology of Biliary Epithelia. Georgetown, TX; Landes Biosciences 2004: 211-219
  • 96 Caligiuri A, Glaser S, Rodgers R et al.. Endothelin 1 inhibits secretin-stimulated ductal secretion by interacting with ETA receptors on large cholangiocytes.  Am J Physiol. 1998;  275 G835-G846
  • 97 Grappone C, Pinzani M, Parola M et al.. Expression of platelet-derived growth factor in newly formed cholangiocytes during experimental biliary fibrosis in rats.  J Hepatol. 1999;  31 100-109
  • 98 Kinnman N, Hultcrantz R, Barbu V et al.. PDGF-mediated chemoattraction of hepatic stellate cells by bile duct segments in cholestatic liver injury.  Lab Invest. 2000;  80 697-707
  • 99 Milani S, Herbst H, Schuppan D, Stein H, Surrenti C. Transforming growth factors beta 1 and beta 2 are differentially expressed in fibrotic liver disease.  Am J Pathol. 1991;  139 1221-1229
  • 100 Sedlaczek N, Jia J D, Bauer M et al.. Proliferating bile duct epithelial cells are a major source of connective tissue growth factor in rat biliary fibrosis.  Am J Pathol. 2001;  158 1239-1244
  • 101 Milani S, Herbst H, Schuppan D, Kim K Y, Riecken E O, Stein H. Procollagen expression by nonparenchymal rat liver cells in experimental biliary fibrosis.  Gastroenterology. 1990;  98 175-184
  • 102 Morland C M, Fear J, McNab G, Joplin R, Adams D H. Promotion of leukocyte transendothelial cell migration by chemokines derived from human biliary epithelial cells in vitro.  Proc Assoc Am Physicians. 1997;  109 372-382
  • 103 Hsieh C S, Huang C C, Wu J J et al.. Ascending cholangitis provokes IL-8 and MCP-1 expression and promotes inflammatory cell infiltration in the cholestatic rat liver.  J Pediatr Surg. 2001;  36 1623-1628
  • 104 Bergasa N V, Liau S, Homel P, Ghali V. Hepatic Met-enkephalin immunoreactivity is enhanced in primary biliary cirrhosis.  Liver. 2002;  22 107-113
  • 105 Bergasa N V, Sabol S L, Young III W S, Kleiner D E, Jones E A. Cholestasis is associated with preproenkephalin mRNA expression in the adult rat liver.  Am J Physiol. 1995;  268(2 Pt 1) G346-G354
  • 106 Fabris L, Cadamuro M, Fiorotto R et al.. Effects of angiogenic factor overexpression by human and rodent cholangiocytes in polycystic liver diseases.  Hepatology. 2006;  43 1001-1012
  • 107 Alvaro D, Metalli V D, Alpini G et al.. The intrahepatic biliary epithelium is a target of the growth hormone/insulin-like growth factor 1 axis.  J Hepatol. 2005;  43 875-883
  • 108 Ebrahimkhani M R, Kiani S, Oakley F et al.. Naltrexone, an opioid receptor antagonist, attenuates liver fibrosis in bile duct ligated rats.  Gut. 2006;  55 1606-1616
  • 109 Omenetti A, Yang L, Li Y X et al.. Hedgehog-mediated mesenchymal-epithelial interactions modulate hepatic response to bile duct ligation.  Lab Invest. 2007;  87 499-514
  • 110 Omenetti A, Li Y X, Chen W, Gainetnidov R R, Yang L, Diehl A M. Cross-talk between hepatic stellate cells and cholangiocytes regulates biliary growth through serotonin.  Hepatology. 2006;  44 A392
  • 111 Benyon R C, Iredale J P, Goddard S, Winwood P J, Arthur M J. Expression of tissue inhibitor of metalloproteinases 1 and 2 is increased in fibrotic human liver.  Gastroenterology. 1996;  110 821-831
  • 112 Canbay A, Taimr P, Torok N, Higuchi H, Friedman S, Gores G J. Apoptotic body engulfment by a human stellate cell line is profibrogenic.  Lab Invest. 2003;  83 655-663
  • 113 Fadok V A, Bratton D L, Konowal A, Freed P W, Westcott J Y, Henson P M. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF.  J Clin Invest. 1998;  101 890-898
  • 114 Lauber K, Bohn E, Krober S M et al.. Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal.  Cell. 2003;  113 717-730
  • 115 Platt N, da Silva R P, Gordon S. Recognizing death: the phagocytosis of apoptotic cells.  Trends Cell Biol. 1998;  8 365-372
  • 116 Welzel T M, Mellemkjaer L, Gloria G et al.. Risk factors for intrahepatic cholangiocarcinoma in a low-risk population: a nationwide case-control study.  Int J Cancer. 2007;  120 638-641
  • 117 Srivatanakul P, Sriplung H, Deerasamee S. Epidemiology of liver cancer: an overview.  Asian Pac J Cancer Prev. 2004;  5 118-125
  • 118 Wu T, Leng J, Han C, Demetris A J. The cyclooxygenase-2 inhibitor celecoxib blocks phosphorylation of Akt and induces apoptosis in human cholangiocarcinoma cells.  Mol Cancer Ther. 2004;  3 299-307
  • 119 Han C, Leng J, Demetris A J, Wu T. Cyclooxygenase-2 promotes human cholangiocarcinoma growth: evidence for cyclooxygenase-2-independent mechanism in celecoxib-mediated induction of p21waf1/cip1 and p27kip1 and cell cycle arrest.  Cancer Res. 2004;  64 1369-1376
  • 120 Kim H J, Lee K T, Kim E K et al.. Expression of cyclooxygenase-2 in cholangiocarcinoma: correlation with clinicopathological features and prognosis.  J Gastroenterol Hepatol. 2004;  19 582-588
  • 121 Han C, Wu T. Cyclooxygenase-2-derived prostaglandin E2 promotes human cholangiocarcinoma cell growth and invasion through EP1 receptor-mediated activation of the epidermal growth factor receptor and Akt.  J Biol Chem. 2005;  280 24,053-24,063
  • 122 Nzeako U C, Guicciardi M E, Yoon J H, Bronk S F, Gores G J. COX-2 inhibits Fas-mediated apoptosis in cholangiocarcinoma cells.  Hepatology. 2002;  35 552-559
  • 123 Yoon J H, Higuchi H, Werneburg N W, Kaufmann S H, Gores G J. Bile acids induce cyclooxygenase-2 expression via the epidermal growth factor receptor in a human cholangiocarcinoma cell line.  Gastroenterology. 2002;  122 985-993
  • 124 Yoon J H, Werneburg N W, Higuchi H et al.. Bile acids inhibit Mcl-1 protein turnover via an epidermal growth factor receptor/Raf-1-dependent mechanism.  Cancer Res. 2002;  62 6500-6505
  • 125 Yoon J H, Gwak G Y, Lee H S, Bronk S F, Werneburg N W, Gores G J. Enhanced epidermal growth factor receptor activation in human cholangiocarcinoma cells.  J Hepatol. 2004;  41 808-814
  • 126 Isomoto H, Kobayashi S, Werneburg N W et al.. Interleukin 6 upregulates myeloid cell leukemia-1 expression through a STAT3 pathway in cholangiocarcinoma cells.  Hepatology. 2005;  42 1329-1338
  • 127 Kobayashi S, Werneburg N W, Bronk S F, Kaufmann S H, Gores G J. Interleukin-6 contributes to Mcl-1 up-regulation and TRAIL resistance via an Akt-signaling pathway in cholangiocarcinoma cells.  Gastroenterology. 2005;  128 2054-2065
  • 128 Meng F, Yamagiwa Y, Taffetani S, Han J, Patel T. IL-6 activates serum and glucocorticoid kinase via p38alpha mitogen-activated protein kinase pathway.  Am J Physiol Cell Physiol. 2005;  289 C971-C981
  • 129 Shimizu T, Yokomuro S, Mizuguchi Y et al.. Effect of transforming growth factor-beta1 on human intrahepatic cholangiocarcinoma cell growth.  World J Gastroenterol. 2006;  12 6316-6324
  • 130 Jaiswal M, LaRusso N F, Shapiro R A, Billiar T R, Gores G J. Nitric oxide-mediated inhibition of DNA repair potentiates oxidative DNA damage in cholangiocytes.  Gastroenterology. 2001;  120 190-199
  • 131 Torok N J, Higuchi H, Bronk S, Gores G J. Nitric oxide inhibits apoptosis downstream of cytochrome C release by nitrosylating caspase 9.  Cancer Res. 2002;  62 1648-1653
  • 132 Ishimura N, Bronk S F, Gores G J. Inducible nitric oxide synthase up-regulates Notch-1 in mouse cholangiocytes: implications for carcinogenesis.  Gastroenterology. 2005;  128 1354-1368
  • 133 Xu L, Han C, Wu T. A novel positive feedback loop between peroxisome proliferator-activated receptor-delta and prostaglandin E2 signaling pathways for human cholangiocarcinoma cell growth.  J Biol Chem. 2006;  281 33982-33996
  • 134 Han C, Demetris A J, Michalopoulos G K, Zhan Q, Shelhamer J H, Wu T. PPARgamma ligands inhibit cholangiocarcinoma cell growth through p53-dependent GADD45 and p21 pathway.  Hepatology. 2003;  38 167-177
  • 135 Sirica A E, Lai G H, Endo K, Zhang Z, Yoon B I. Cyclooxygenase-2 and ERBB-2 in cholangiocarcinoma: potential therapeutic targets.  Semin Liver Dis. 2002;  22 303-313
  • 136 Harnois D M, Que F G, Celli A, LaRusso N F, Gores G J. Bcl-2 is overexpressed and alters the threshold for apoptosis in a cholangiocarcinoma cell line.  Hepatology. 1997;  26 884-890
  • 137 Ohashi K, Nakajima Y, Kanehiro H et al.. Ki-ras mutations and p53 protein expressions in intrahepatic cholangiocarcinomas: relation to gross tumor morphology.  Gastroenterology. 1995;  109 1612-1617
  • 138 Tannapfel A, Sommerer F, Benicke M et al.. Mutations of the BRAF gene in cholangiocarcinoma but not in hepatocellular carcinoma.  Gut. 2003;  52 706-712
  • 139 Argani P, Shaukat A, Kaushal M et al.. Differing rates of loss of DPC4 expression and of p53 overexpression among carcinomas of the proximal and distal bile ducts.  Cancer. 2001;  91 1332-1341
  • 140 Xia X, Chukwunyere E, Gao D, Xiao Y, LeSage G. Loss of inhibition of cell cycle progression in cholangiocarcinoma duo to aberrant localization of p27 requires phosphorylation of T153 by Akt.  Gastroenterology. 2005;  128(suppl 2) 60

Gene LeSageM.D. 

Professor of Medicine, The University of Texas Houston Medical School

6431 Fannin Street, MSB 4.234, Houston, TX 77030

Email: gene.lesage@uth.tmc.edu

    >