Semin Plast Surg 2007; 21(3): 175-192
DOI: 10.1055/s-2007-991186
© Thieme Medical Publishers

Laser Tattoo Removal

Eric F. Bernstein1
  • 1Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania
Further Information

Publication History

Publication Date:
20 November 2007 (online)

ABSTRACT

Tattooing has been a part of human culture since the earliest beginnings of modern civilization. What has changed over the millennia are the myriad of colors with which we can now express our thoughts, feelings, and desires through body art. What has not changed is human nature, and our propensity to change our minds about what it is we think, feel, and wish to express on the canvas of our skin. Our fickle nature results in the desire to change what has been placed as a permanent reminder of a friend, spouse, or as a work of art. The technology used to remove tattoos began with destructive methods of removal, which wreaked havoc not only on the tattoo but more prominently on the skin containing that tattoo. The discovery of selective photothermolysis, the ability to selectively remove target structures without disrupting the surrounding skin, made it at least possible to remove tattoos without destroying the surrounding skin and leaving a scar. Theory predicted that pulse durations in the nanosecond domain would be optimal for tattoo removal, and the Q-switched neodymium:yttrium-aluminum-garnet, alexandrite, and ruby lasers operate in this range and are the key tools for modern tattoo removal. Too often, the wrong devices operating in the millisecond range, such as intense pulsed light sources, or lasers that are nonselective, such as the carbon dioxide laser, are used to treat tattoos, resulting in significant scarring without complete removal of the tattoo. Although the Q-switched lasers are capable of removing tattoos without harming the skin, removal often takes numerous treatments and still can be incomplete, especially when attempting to remove multicolored tattoos. Developments leading to removable tattoo inks, feedback systems to detect the absorbance characteristics of tattoo inks, dermal clearing agents, and perhaps even shorter pulse-duration lasers should result in improvements in tattoo removal in the near future.

REFERENCES

  • 1 Gilbert S. Tattoo History: A Source Book. New York, NY; Juno Books 2000
  • 2 Allen P. Tattoo Traditions of Hawai'i. Honolulu, HI; Mutual Publishing 2005: 2-3
  • 3 Scutt R WB, Gotch C. Art, Sex and Symbol. London, UK; Cornwall Books 1985
  • 4 Spindler K. The Man in the Ice: The Preserved Body of a Neolithic Man Reveals the Secrets of the Stone Age. London, UK; Weidenfeld and Nicolson 1994: 172
  • 5 Bianchi R S. Tattoo in ancient Egypt. In: Rubin A Marks of Civilization. Los Angeles, CA; Museum of Cultural History, The University of California 1988: 26
  • 6 Hambly W D. The History of Tattooing and its Significance. London, UK; H.F. & G. Witherby 1925: 333
  • 7 Rudenko S I. Frozen Tombs of Siberia: The Pazyryk Burials of Iron Age Horsemen. Berkeley, CA; The University of California Press 1970: 110-114
  • 8 Berchon E. Histoire medicale du tatouage. Paris, France; 1869: 454-455
  • 9 Alster T, Apfelberg D. Cosmetic Laser Surgery. New York, NY; Wiley-Liss 1996
  • 10 Scutt R W. The chemical removal of tattoos.  Br J Plast Surg. 1972;  25 189-194
  • 11 Manchester G H. Removal of commercial tattoos by abrasion with table salt.  Plast Reconstr Surg. 1974;  53 517-521
  • 12 Johannesson A. A simplified method of focal salabrasion for removal of linear tatoos.  J Dermatol Surg Oncol. 1985;  11 1004-1005
  • 13 Clabaugh W. Removal of tattoos by superficial dermabrasion.  Arch Dermatol. 1968;  98 515-521
  • 14 Koerber W A, Price N M. Salabrasion of tattoos.  Arch Dermatol. 1978;  114 884-888
  • 15 Goldman M P, Fitzpatrick R E. Cutaneous Laser Surgery: The Art and Science of Selective Photothermolysis. St. Louis, MO; Mosby-Year Book 1994
  • 16 Dorn B, Christophers E, Kietzman H. Treatment of port-wine stains and hemangiomas by infrared contact coagulation. 17th World Congress of Dermatology Abstracts 1987 2: 307
  • 17 Groot D W, Arlette J P, Johnston P A. Comparison of the infrared coagulator and the carbon dioxide laser in the removal of decorative tattoos.  J Am Acad Dermatol. 1986;  15 518-522
  • 18 Colver G B, Cherry G W, Dawber R P, Ryan T J. Tattoo removal using infrared coagulation.  Br J Dermatol. 1985;  112 481-485
  • 19 Venning V A, Clover G B, Millard P R, Ryan T J. Tattoo removal using infrared coagulation: a dose comparison.  Br J Dermatol. 1987;  117 99-105
  • 20 Gupta S C. An investigation into a method for the removal of dermal tattoos: a report on animal and clinical studies.  Plast Reconstr Surg. 1965;  36 354-361
  • 21 Ruiz-Esparza J, Goldman M P, Fitzpatrick R E. Tattoo removal with minimal scarring: the chemo-laser technique.  J Dermatol Surg Oncol. 1988;  14 1372-1376
  • 22 Dvir E, Hirshowitz B. Tattoo removal by cryosurgery.  Plast Reconstr Surg. 1980;  66 373-379
  • 23 Colver G B, Dawber R P. The removal of digital tattoos.  Int J Dermatol. 1985;  24 567-568
  • 24 Buncke Jr H J, Conway H. Surgery of decorative and traumatic tattoos.  Plast Reconst Surg. 1957;  20 67-77
  • 25 Bailey B N. Treatment of tattoos.  Plast Reconstr Surg. 1967;  40 361-371
  • 26 Fujimori Y. Treatment of nevus of Ota and nevus spilus. In: Skin Surface Surgery. Tokyo, Japan; Kokuseido Publishing Co. 1990: 181-188
  • 27 Kobayashi T. Microsurgical treatment of nevus of Ota.  J Dermatol Surg Oncol. 1991;  17 936-941
  • 28 Cosman B, Apfelberg D B, Druker D. An effective cosmetic treatment for Ota's nevus.  Ann Plast Surg. 1989;  22 36-42
  • 29 Goldstein N, Penoff J, Price N et al.. Techniques of removal of tattoos.  J Dermatol Surg Oncol. 1979;  5 901-910
  • 30 Morgan B D. Tattoos.  BMJ. 1974;  3 34-36
  • 31 Gupta S C. An investigation into a method for the removal of dermal tattoos: a report on animal and clinical studies.  Plast Reconstr Surg. 1965;  36 354-361
  • 32 Apfelberg D B, Maser M R, Lash H. Argon laser treatment of decorative tattoos.  Br J Plast Surg. 1979;  32 141-144
  • 33 Maser M R, Apfelberg D B, Lash H. Clinical applications of the argon and carbon dioxide lasers in dermatology and plastic surgery.  World J Surg. 1983;  7 684-691
  • 34 McBurney E I. Carbon dioxide laser treatment of dermatologic lesions.  South Med J. 1978;  71 795-797
  • 35 Brady S C, Blokmanis A, Jewett L. Tattoo removal with the carbon dioxide laser.  Ann Plast Surg. 1979;  2 482-490
  • 36 Bailin P L, Ratz J R, Levine H L. Removal of tattoos by CO2 laser.  J Dermatol Surg Oncol. 1980;  6 997-1001
  • 37 Reid R, Muller S. Tattoo removal by CO2 laser dermabrasion.  Plast Reconstr Surg. 1980;  65 717-721
  • 38 Fitzpatrick R E, Ruiz-Esparza J N, Goldman M P. The depth of thermal necrosis using the CO2 laser: A comparison of the superpulsed mode and conventional modes.  J Dermatol Surg Oncol. 1991;  17 340-344
  • 39 Ruiz-Esparza J, Goldman M P, Fitzpatrick R E. Tattoo removal with minimal scarring: The chemo-laser technique.  J Dermatol Surg Oncol. 1988;  14 1372-1376
  • 40 Apfelberg D B, Maser M R, Lash H, White D N, Flores J T. Comparison of the argon and carbon dioxide laser treatment of decorative tattoos: a preliminary report.  Ann Plast Surg. 1985;  14 6-15
  • 41 Apfelberg D B, Maser M R, Lash H, Rivers J. The argon laser for cutaneous lesions.  JAMA. 1981;  245 2073-2076
  • 42 Ohshiro T, Maruyama Y. The ruby and argon lasers in the treatment of naevi.  Ann Acad Med Singapore. 1983;  12 388-391
  • 43 Trelles M A, Verkruysse W, Pickering J W et al.. Monoline argon laser (514 nm) treatment of benign pigmented lesions with long pulse lengths.  J Photochem Photobiol B. 1992;  16 357-360
  • 44 Bernstein E F, Kornbluth S, Brown D B, Black J. Treatment of spider veins using a 10 millisecond pulse-duration frequency-doubled neodymium YAG laser.  J Dermatol Surg. 1999;  25 316-320
  • 45 Goldman L, Blaney D J, Kindel Jr D J, Richfield D, Franke E K. Pathology of the effect of the laser beam on the skin.  Nature. 1963;  197 912-914
  • 46 Goldman L, Wilson R G, Hornby P, Meyer R G. Radiation from a Q-switched ruby laser. Effect of repeated impacts of power output of 10 megawatts on a tattoo of man.  J Invest Dermatol. 1965;  44 69-71
  • 47 Anderson R R, Parrish J A. Selective photothermolysis: Precise microsurgery by selective absorption of pulsed radiation.  Science. 1983;  220 524-527
  • 48 Taylor C R, Gange R W, Dover J S et al.. Treatment of tattoos by Q-switched ruby laser. A dose-response study.  Arch Dermatol. 1990;  126 893-899
  • 49 Scheibner A, Kenny G, White W, Wheeland R G. A superior method of tattoo removal using the Q-switched ruby laser.  J Dermatol Surg Oncol. 1990;  16 1091-1098
  • 50 Ashinoff R, Geronemus R G. Rapid response of traumatic and medical tattoos to treatment with the Q-switched ruby laser.  Plast Reconstr Surg. 1993;  91 841-845
  • 51 Kilmer S L, Anderson R R. Clinical use of the Q-switched ruby and the Q-switched Nd:YAG (1064 nm and 532 nm) lasers for treatment of tattoos.  J Dermatol Surg Oncol. 1993;  19 330-338
  • 52 Kilmer S L, Lee M S, Grevelink J M, Flotte T J, Anderson R R. The Q-switched Nd:YAG laser effectively treats tattoos. A controlled, dose-response study.  Arch Dermatol. 1993;  129 971-978
  • 53 Jones A, Roddey P, Orengo I, Rosen T. The Q-switched ND:YAG laser effectively treats tattoos in darkly pigmented skin.  Dermatol Surg. 1996;  22 999-1001
  • 54 Fitzpatrick R E, Goldman M P. Tattoo removal using the alexandrite laser.  Arch Dermatol. 1994;  130 1508-1514
  • 55 Alster T S. Q-switched alexandrite laser treatment (755 nm) of professional and amateur tattoos.  J Am Acad Dermatol. 1995;  33 69-73
  • 56 Leuenberger M L, Mulas M W, Hata T R, Goldman M P, Fitzpatrick R E, Grevelink J M. Comparison of the Q-switched alexandrite, Nd:YAG, and ruby lasers in treating blue-black tattoos.  Dermatol Surg. 1999;  25 10-14
  • 57 Zelickson B D, Mehregan D A, Zarrin A A et al.. Clinical, histologic, and ultrastructural evaluation of tattoos treated with three laser systems.  Lasers Surg Med. 1994;  15 364-372
  • 58 Ross V, Naseef G, Lin G et al.. Comparison of responses of tattoos to picosecond and nanosecond Q-switched neodymium: YAG lasers.  Arch Dermatol. 1998;  134 167-171
  • 59 McNichols R J, Fox M A, Gowda A, Tuya S, Bell B, Motamedi M. Temporary dermal scatter reduction: quantitative assessment and implications for improved laser tattoo removal.  Lasers Surg Med. 2005;  36 289-296
  • 60 Bhardwaj S S, Brodell R T, Taylor J S. Red tattoo reactions.  Contact Dermatitis. 2003;  48 236-237
  • 61 Antony F C, Harland C C. Red ink tattoo reactions: successful treatment with the Q-switched 532 nm Nd:YAG laser.  Br J Dermatol. 2003;  149 94-98
  • 62 Dave R, Mahaffey P J. Successful treatment of an allergic reaction in a red tattoo with the Nd-YAG laser.  Br J Plast Surg. 2002;  55 456
  • 63 Kuperman-Beade M, Levine V J, Ashinoff R. Laser removal of tattoos.  Am J Clin Dermatol. 2001;  2 21-25
  • 64 England R W, Vogel P, Hagan L. Immediate cutaneous hypersensitivity after treatment of tattoo with Nd:YAG laser: a case report and review of the literature.  Ann Allergy Asthma Immunol. 2002;  89 215-217
  • 65 Zemtsov A, Wilson L. CO2 laser treatment causes local tattoo allergic reaction to become generalized.  Acta Derm Venereol. 1997;  77 497
  • 66 Anderson R R, Geronemus R, Kilmer S L, Farinelli W, Fitzpatrick R E. Cosmetic tattoo ink darkening. A complication of Q-switched and pulsed-laser treatment.  Arch Dermatol. 1993;  129 1010-1014
  • 67 Jimenez G, Weiss E, Spencer J M. Multiple color changes following laser therapy of cosmetic tattoos.  Dermatol Surg. 2002;  28 177-179
  • 68 Chang S E, Kim K J, Choi J H, Sung K J, Moon K C, Koh J K. Areolar cosmetic tattoo ink darkening: a complication of Q-switched alexandrite laser treatment.  Dermatol Surg. 2002;  28 95-96
  • 69 Ross E V, Yashar S, Michaud N et al.. Tattoo darkening and nonresponse after laser treatment: a possible role for titanium dioxide.  Arch Dermatol. 2001;  137 33-37
  • 70 Rudlinger R. Successful removal by ruby laser of darkened ink after ruby laser treatment of mismatched tattoos for acne scars.  J Cutan Laser Ther. 2000;  2 37-39
  • 71 Moreno-Arias G A, Camps-Fresneda A. The use of Q-switched alexandrite laser (755 nm, 100 ns) for eyeliner tattoo removal.  J Cutan Laser Ther. 1999;  1 113-115
  • 72 Fitzpatrick R E, Lupton J R. Successful treatment of treatment-resistant laser-induced pigment darkening of a cosmetic tattoo.  Lasers Surg Med. 2000;  27 358-361
  • 73 Herbich G J. Ultrapulse carbon dioxide laser treatment of an iron oxide flesh-colored tattoo.  Dermatol Surg. 1997;  23 60-61
  • 74 Baumler W, Eibler E T, Hohenleutner U, Sens B, Sauer J, Landthaler M. Q-switch laser and tattoo pigments: first results of the chemical and photophysical analysis of 41 compounds.  Lasers Surg Med. 2000;  26 13-21
  • 75 Vasold R, Naarmann N, Ulrich H et al.. Tattoo pigments are cleaved by laser light-the chemical analysis in vitro provide evidence for hazardous compounds.  Photochem Photobiol. 2004;  80 185-190
  • 76 Baumler W, Eibler E T, Hohenleutner U, Sens B, Sauer J, Landthaler M. Q-switch laser and tattoo pigments: first results of the chemical and photophysical analysis of 41 compounds.  Lasers Surg Med. 2000;  26 13-21
  • 77 Vasold R, Naarmann N, Ulrich H et al.. Tattoo pigments are cleaved by laser light-the chemical analysis in vitro provide evidence for hazardous compounds.  Photochem Photobiol. 2004;  80 185-190

Eric F BernsteinM.D. 

Laser Surgery & Cosmetic Dermatology Centers, Inc.

931 Haverford Road, 2nd Floor, Bryn Mawr, PA 19010

    >