Horm Metab Res 2007; 39(11): 830-834
DOI: 10.1055/s-2007-991179
Humans, Clinical

© Georg Thieme Verlag KG Stuttgart · New York

Influence of ALA54THR Polymorphism of Fatty Acid-binding Protein 2 on Obesity and Cardiovascular Risk Factors

D. A. de Luis 1 , M. G. Sagrado 1 , R. Aller 1 , O. Izaola 1 , R. Conde 1
  • 1Institute of Endocrinology and Nutrition, Medicine School and Unit of Investigation, Hospital Rio Hortega, University of Valladolid, Valladolid, Spain
Further Information

Publication History

received 22.01.2007

accepted 19.03.2007

Publication Date:
09 November 2007 (online)

Abstract

A transition of G to A at codon 54 of FABP2 results in an amino acid substitution (Ala54 to Thr54). This polymorphism was associated with some cardiovascular risk factors. The aim of our study was to investigate the influence of Thr54 polymorphism in the FABP2 gene on obesity anthropometric parameters and cardiovascular risk factors. A population of 226 obesity (body mass index >30) nondiabetic outpatients were analyzed. An indirect calorimetry, tetrapolar electrical bioimpedance, blood pressure, a serial assessment of nutritional intake with 3 days of written food records, and biochemical analysis (lipid profile, adipocytokines, insulin, CRP, and lipoprotein-a) were performed. The statistical analysis was performed for the combined Ala54/Thr54 and Thr54/Thr54 as a mutant group and wild type Ala54/Ala54 as a second group. Two-hundred and twenty-six patients gave informed consent and were enrolled in the study. The mean age was 44.2±16 years and the mean BMI 35.1±5.1, with 63 males (28.3%) and 163 females (71.7%). One-hundred and thirteen patients (50%) had the genotype Ala54/Ala54 (wild group) and 113 (50%) patients had the genotype Ala54/Thr54 (91 patients, 40.2%) or Thr54/Thr54 (22 patients, 9.8%) (mutant group). The ANOVA analysis of the three groups (Ala54/Thr54, Thr54/Thr54 and Ala54/Ala54) shows a higher levels of fat mass in Thr54/Thr54 group (45.6±14.6 kg) than Ala54/Ala54 (37.5±11.2 kg: p<0.05), without differences with Ala54/Thr54 group (41.2±13.5 kg). CRP, IL-6, and lipoprotein-a were higher in mutant group (Ala54/Thr54, Thr54/Thr54) than in wild group (Ala54/Ala54). The novel finding of this study is the association of the Thr54/Ala54 and Thr54/Thr54 FABP2 phenotypes with higher levels of C reactive protein, IL6, and lipoprotein-a. Further studies are needed to explain the role of this polymorphism in different populations.

References

  • 1 Aranceta J, Perez Rodrigo C, Serra Majem L. Prevalencia de la obesidad en España: estudio SEEDO 97.  Med Clin (Barc). 1998;  111 441-445
  • 2 Matsuda M, Shimomura I, Sata M. Role of adiponectin in preventing vascular stenosis. The missing link of adipo-vascular axis.  J Biol Chem. 2002;  277 37487-37491
  • 3 Kumada M, Kihara S, Sumitsuji S. Association of hypoadiponectinemia with coronary artery disease in men.  Arterioscler Thromb Vasc Biol. 2003;  23 85-89
  • 4 Shimomoura I, Hammer RE, Ikemoto S. Leptin reverses insulin resistance and diabetes mellitus in mice with congenital lipodystrophy.  Nature. 1999;  401 73-76
  • 5 Steppan CM, Bailey ST, Bhat S. The hormone resistin links obesity to diabetes.  Nature. 2001;  409 307-312
  • 6 Matsuzawa Y. Adipocytokines: Emerging therapeutic targets.  Curr Atheroscler Rep. 2005;  7 58-62
  • 7 Okasaki T, Himeno E, Nanri H, Ogata H, Ikeda M. Effects of mild aerobic exercise and a mild hypocaloric diet on plasma leptin in sedentary women.  Clin Exp Pharmacol. 1999;  26 415-420
  • 8 Xenachis C, Samojlik E, Raghuwanshi MP, Kirschner MA. Leptin, in-sulin and TNF-alpha in weight loss.  J Endocrinol Invest. 2001;  24 865-870
  • 9 Besnard P. Cellular and molecular aspects of fat metabolism in the small intestine.  Proc Nutr Soc. 1996;  5 19-37
  • 10 Nieuwenhoven FA Van, Vusse GJ Van der, Glatz JFC. Membrane associated and cytoplasmatic fatty acid binding proteins.  Lipids. 1996;  30 S223-S227
  • 11 Baier LJ, Sacchettini JC, Knowler WC. An amino acid substitution in the human intestinal fatty acid binding protein is associated with increased fatty acid binding, increased fat oxidation, and insulin resistance.  J Clin Invest. 1995;  95 1281-1287
  • 12 Albala C, Santos JL, Viallaroel AC, Lera L, Liberman C. Intestinal FABP2 A54 T polymorphism: Association with insulin resistance and obesity in women.  Obes Res. 2004;  12 340-345
  • 13 Duart MJ, Arroyo CO, Moreno JL. Validation of a insulin model for the reactions in RIA.  Clin Chem Lab Med. 2002;  40 1161-1167
  • 14 Mathews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF. Homesotasis model assessment: insulin resistance and beta cell function from fasting plasma glucose and insulin concentrations in man.  Diabetologia. 1985;  28 412-414
  • 15 Pfutzner A, Langefeld M, Kunt T, Lobig M. Evaluation of human resistin assays with serum from patients with type 2 diabetes and different degrees of insulin resistance.  Clin Lab. 2003;  49 571-576
  • 16 Meier U, Gressner M. Endocrine regulation of energy metabolism: review of pathobiochemical and clinical chemical aspects of leptin, ghrelin, adiponectin, and resistin.  Clin Chem. 2004;  50 1511-1525
  • 17 Suominen P. Evaluation of an enzyme immunometric assay to measure serum adiponectin concentrations.  Clin Chem. 2004;  50 219-221
  • 18 Lubrano V, Cocci F, Battaglia D, Papa A. Usefulness of high sensitivity IL6 measurement for clinical characterization of patients with coronary artery disease.  J Clin Lab Anal. 2005;  19 110-114
  • 19 Khan SS, Smith MS, Reda D, Suffredini AF, Mac Coy JP. Multiplex bead array assays for detection of soluble cytokines: comparisons of sensitivity and quantitative values among kits from multiple manufactures.  Cytom B Clin Cytom. 2004;  61 35-39
  • 20 Feurer ID, Mullen JL. Bedside measurement of resting energy expenditure and respiratory quotient via indirect calorimetry.  Nutr Clin Pract. 1986;  1 43-49
  • 21 Pichard C, Slosman D, Hirschel B, Kyle U. Bioimpedance analysis in AIDS patients: an improved method for nutritional follow up.  Clin Res. 1993;  41 53
  • 22 Mataix J, Mañas M. Tablas de composición de alimentos españoles. University of Granada 1998
  • 23 Sipilainen R, Uusitupa M, Heikkinen S, Rissanen A, Laakso M. Variants in the human intestinal fatty acid binding protein 2 gene in obese subjects.  J Clin Endocrinol Metab. 1997;  82 2629-2632
  • 24 Prochazka M, Lillioja S, Tait JF. Linkage of chromosomal markers on 4q with a putative gene determining maximal insulin action in Pima Indians.  Diabetes. 1993;  42 514-519
  • 25 Mitchell BD, Kammerer CM, O’Connell P. Evidence for linkage of postchallende insulin levels with intestinal fatty acid-binding protein (FABP-2) in Mexican Americans.  Diabetes. 1995;  44 1046-1053
  • 26 Chiu KC, Chuang LM, Yoon C. The A54 T polymorphism at the intestinal fatty acid binding protein 2 is associated with insulin resistance in glucose tolerant Caucasians.  BMC Genet. 2001;  2 7-13
  • 27 Yamada K, Yuan X, Ishimayama S. Association between Ala 54Thr substitution of the fatty acid binding protein 2 gene with insulin resistance and intra abdominal fat thickness in Japanese men.  Diabetologia. 1997;  40 706-710
  • 28 Kim CH, Yun SK, Byun DW. Codon 4 polymorphism of the fatty acid binding protein 2 gene is associated with increased fat oxidation and hyperinsulinemia but not with intestinal fatty acid absorption in Korean men.  Metabolism. 2001;  50 473-476
  • 29 Carlsson M, Orho Melander M, Hedenbro J, Alegren P, Groop LC. The T54 allele of the intestinal fatty acid-binding protein 2 is associated with parenteral history of stroke.  J Clin Endocrinol Metab. 2000;  85 2801-2804
  • 30 Georgopoulos A, Aras O, Tsai MY. Codon 54 polymorphism of the fatty acid binding protein 2 gene is associated with elevation of fasting and postprandial triglyceride in type 2 diabetes.  J Clin Endocrinol Metab. 2000;  85 3155-3160
  • 31 Georgopoulos A, Aras O, Noutsou M, Tsai MY. Unlike type 2 diabetes, type 1 does not interact with the codon 54 polymorphism of the fatty acid binding protein 2 gene.  J Clin Endocrinol. 2002;  87 3735-3739
  • 32 Stem MP, Mitchell DB, Baglero J, Reinhart L, Krammerer CM, Harrison CR. Evidence for a major gene type II diabetes and linkage analysis with selected candidates’ genes in Mexican Americans.  Diabetes. 1996;  45 563-568
  • 33 Vionnet N, Hani EH, Leage S, Philippi A, Hager J, Varret M. et al . Genetics of NIDDM in France: studies with 19 candidate genes in affected sib pairs.  Diabetes. 1997;  46 1062-1068
  • 34 Duarte NL, Colagiuri S, Palu T, Wang XL, Wilcken DEL. Obesity, typeII diabetes and the Ala54 Thr polymorphism of fatty acid binding protein 2 in the Tongan population.  Mol Genet Metab. 2003;  79 183-189
  • 35 Agren JJ, Vidgren HM, Valve RS, Laakso M, Uusitupa MI. Postprandial responses of individual fatty acids in subjects homozygous for the threonine or alanine-encoding allele in codon 54 of the intestinal fatty acid binding protein 2 gene.  Am J Clin Nutr. 2001;  73 31-35
  • 36 Li Y, Fisher E, Klapper M, Boening H, Pfeiffer A, Hampe J. et al . Association between functional FABP2 promoter haplotype and type 2 diabetes.  Horm Metab Res. 2006;  38 300-307
  • 37 Fisher E, Li Y, Burwinkel B, Kühr V, Hoffmann K, Möhling M. et al . Preliminary evidence of FABP2 A54 T polymorphism associated with reduced risk of type 2 diabetes and obesity in women from a German Cohort.  Horm Res Metab. 2006;  38 341-345

Correspondence

Dr. D. A. de Luis

Professor Associated of Nutrition

Executive Director of Institute of Endocrinology and Nutrition

Medicine School

Valladolid University

C/Los perales 16

47130 Simancas

Valladolid

Spain

Fax: +34/9833/31 56 6

Email: dadluis@yahoo.es

    >