Semin Reprod Med 2007; 25(6): 483-489
DOI: 10.1055/s-2007-991046
© Thieme Medical Publishers

The Effect of Uterine Fibroids on Embryo Implantation

Andrew W. Horne1 , Hilary O.D Critchley1
  • 1Division of Reproductive and Developmental Sciences, The University of Edinburgh Centre for Reproductive Biology, The Queen's Medical Research Institute, Edinburgh, United Kingdom
Further Information

Publication History

Publication Date:
25 October 2007 (online)

ABSTRACT

Uterine fibroids are common but their role in infertility and effect on embryo implantation is unclear. There is evidence that submucosal fibroids are associated with poor reproductive outcome and that treatment with myomectomy is associated with an improvement in pregnancy rates. Various theories have been proposed to explain this relationship. Fibroids cause a mechanical distortion of the endometrial cavity-their presence may alter gamete and embryo transport (due to blockage of the tubal ostia or by altering uterine contractility and peristalsis) and subsequent embryo implantation (due to compression of the endometrium). They may lead to disruption of the junctional zone within the myometrial layer, affecting general uterine function in the initial stages of embryo invasion and later placentation. Altered vasculature due to the abnormal expression of angiogenic factors by uterine fibroids (such as basic fibroblast growth factor and platelet-derived growth factor) could play a role in a reduced implantation rate in patients with fibroids. Similarly, changes in the endometrium mediated by inflammation and factors involved in the process of fibrosis (such as transforming growth factor) could also have a detrimental effect. In addition, fibroids may affect gene expression pattern in the endometrium (such as HOXA10), disrupting the window of implantation. The supporting evidence for these theories is discussed in this review.

REFERENCES

  • 1 Cramer S F, Horiszny J A, Leppert P. Epidemiology of uterine leiomyomas. With an etiologic hypothesis.  J Reprod Med. 1995;  40(8) 595-600
  • 2 Payson M, Leppert P, Segars J. Epidemiology of myomas.  Obstet Gynecol Clin North Am. 2006;  33(1) 1-11
  • 3 Stewart E A. Uterine fibroids.  Lancet. 2001;  357(9252) 293-298
  • 4 Townsend D E, Sparkes R S, Baluda M C, McClelland G. Unicellular histogenesis of uterine leiomyomas as determined by electrophoresis by glucose-6-phosphate dehydrogenase.  Am J Obstet Gynecol. 1970;  107 1168-1173
  • 5 Rein M S, Friedman A J, Barbieri R L, Pavelka K, Fletcher J A, Morton C C. Cytogenic abnormalities in uterine leiomyomata.  Obstet Gynecol. 1991;  77 923-926
  • 6 Linder D, Gartler S M. Glucose-6-phosphate dehydrogenase mosaicism: utilization as a cell marker in the study of leiomyomas.  Science. 1965;  150 67-69
  • 7 Mashal R D, Fejzo M L, Friedman A J et al.. Analysis of androgen receptor DNA reveals the independent clonal origins of uterine leiomyomata and the secondary nature of cytogenetic aberrations in the development of leiomyomata.  Genes Chromosomes Cancer. 1994;  11 1-6
  • 8 Pollow K, Sinnecker G, Boquoi E, Pollow B. In vitro conversion of estradiol-17beta into estrone in normal human myometrium and leiomyoma.  J Clin Chem Clin Biochem. 1978;  16 493-502
  • 9 Fayed Y M, Tsibris J C, Langenberg P W, Robertson Jr A L. Human uterine leiomyoma cells: binding and growth responses to epidermal growth factor, platelet-derived growth factor, and insulin.  Lab Invest. 1989;  60 30-37
  • 10 Lumsden M A, West C P, Hawkins R A, Bramley T A, Rumgay L, Baird D T. The binding of steroids to myometrium and leiomyomata (fibroids) in women treated with the gonadotrophin-releasing hormone agonist Zoladex (ICI 118630).  J Endocrinol. 1989;  121 389-396
  • 11 Tommola P, Pekonen F, Rutanen E M. Binding of epidermal growth factor and insulin-like growth factor I in human myometrium and leiomyomata.  Obstet Gynecol. 1989;  74 658-662
  • 12 Maruo T, Ohara N, Wang J, Matsuo H. Sex steroidal regulation of uterine leiomyoma growth and apoptosis.  Hum Reprod Update. 2004;  10(3) 207-220
  • 13 Shimomura Y, Matsuo H, Samoto T, Maruo T. Up-regulation by progesterone of proliferating cell nuclear antigen and epidermal growth factor expression in human uterine leiomyoma.  J Clin Endocrinol Metab. 1998;  83(6) 2192-2198
  • 14 Gao Z, Matsuo H, Nakago S, Kurachi O, Maruo T. p53 Tumor suppressor protein content in human uterine leiomyomas and its down-regulation by 17 beta-estradiol.  J Clin Endocrinol Metab. 2002;  87 3915-3920
  • 15 Sasaki H, Ohara N, Xu Q et al.. A novel selective progesterone receptor modulator asoprisnil activates tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated signaling pathway in cultured human uterine leiomyoma cells in the absence of comparable effects on myometrial cells.  J Clin Endocrinol Metab. 2007;  92(2) 616-623
  • 16 Catherino W, Salama A, Potlog-Nahari C, Leppert P, Tsibris J, Segars J. Gene expression studies in leiomyomata: new directions for research.  Semin Reprod Med. 2004;  22(2) 83-90
  • 17 Pritts E A. Fibroids and infertility: a systematic review of the evidence.  Obstet Gynecol Surv. 2001;  56(8) 483-491
  • 18 Neuwirth R S, Amin H K. Excision of submucus fibroids with hysteroscopic control.  Am J Obstet Gynecol. 1976;  126(1) 95-99
  • 19 Saridogan E, Cutner A. Endoscopic management of uterine fibroids.  Hum Fertil (Camb). 2006;  9(4) 201-208
  • 20 Buttram Jr V C, Reiter R C. Uterine leiomyomata: etiology, symptomatology, and management.  Fertil Steril. 1981;  36(4) 433-445
  • 21 Verkauf B S. Myomectomy for fertility enhancement and preservation.  Fertil Steril. 1992;  58(1) 1-15
  • 22 Vercellini P, Maddalena S, De Giorgi O, Aimi G, Crosignani P G. Abdominal myomectomy for infertility: a comprehensive review.  Hum Reprod. 1998;  13(4) 873-879
  • 23 Bajekal N, Li T C. Fibroids, infertility and pregnancy wastage.  Hum Reprod Update. 2000;  6(6) 614-620
  • 24 Hart R, Khalaf Y, Yeong C T, Seed P, Taylor A, Braude P. A prospective controlled study of the effect of intramural uterine fibroids on the outcome of assisted conception.  Hum Reprod. 2001;  16(11) 2411-2417
  • 25 Donnez J, Jadoul P. What are the implications of myomas on fertility? A need for a debate?.  Hum Reprod. 2002;  17(6) 1424-1430
  • 26 Bulletti C, DE Ziegler D, Levi Setti P, Cicinelli E, Polli V, Stefanetti M. Myomas, pregnancy outcome, and in vitro fertilization.  Ann N Y Acad Sci. 2004;  1034 84-92
  • 27 Benecke C, Kruger T F, Siebert T I, Van der Merwe J P, Steyn D W. Effect of fibroids on fertility in patients undergoing assisted reproduction. A structured literature review.  Gynecol Obstet Invest. 2005;  59(4) 225-230
  • 28 Klatsky P C, Lane D E, Ryan I P, Fujimoto V Y. The effect of fibroids without cavity involvement on ART outcomes independent of ovarian age.  Hum Reprod. 2007;  22(2) 521-526
  • 29 Oliveira F G, Abdelmassih V G, Diamond M P, Dozortsev D, Melo N R, Abdelmassih R. Impact of subserosal and intramural uterine fibroids that do not distort the endometrial cavity on the outcome of in vitro fertilization-intracytoplasmic sperm injection.  Fertil Steril. 2004;  81(3) 582-587
  • 30 Tulandi T. Treatment of uterine fibroids-is surgery obsolete?.  N Engl J Med. 2007;  356(4) 411-413
  • 31 Edwards R D, Moss J G, Lumsden M A Committee of the Randomized Trial of Embolization versus Surgical Treatment for Fibroids et al.. Uterine-artery embolization versus surgery for symptomatic uterine fibroids.  N Engl J Med. 2007;  356(4) 360-370
  • 32 Walker W J, McDowell S J. Pregnancy after uterine artery embolisation for leiomyomata: a series of 56 completed studies.  Am J Obstet Gynecol. 2006;  195 1266-1271
  • 33 Pron G, Mocarski E, Bennett J et al.. Pregnancy after uterine artery embolisation for leiomyomata: the Ontario multicentre trial.  Obstet Gynecol. 2005;  105 67-76
  • 34 Huang J Y, Kafy S, Dugas A et al.. Failure of uterine fibroid embolisation.  Fertil Steril. 2006;  85 30-35
  • 35 Olive D L, Lindheim S R, Pritts E A. Non-surgical management of leiomyoma: impact on fertility.  Curr Opin Obstet Gynecol. 2004;  16(3) 239-243
  • 36 Deligdish L, Loewenthal M. Endometrial changes associated with myomata of the uterus.  J Clin Pathol. 1970;  23(8) 676-680
  • 37 Hickey M, Fraser I S. Clinical implications of disturbances of uterine vascular morphology and function.  Baillieres Best Pract Res Clin Obstet Gynaecol. 2000;  14(6) 937-951
  • 38 Hunt J E, Wallach E E. Uterine factors in infertility: an overview.  Clin Obstet Gynecol. 1974;  17 44-64
  • 39 Vollenhoven B J, Lawrence A S, Healy D L. Uterine fibroids: a clinical review.  Br J Obstet Gynaecol. 1990;  97 285-298
  • 40 Nakai A, Togashi K, Ueda H, Yamaoka T, Fujii S, Konishi J. Junctional zone on magnetic resonance imaging: continuous changes on ultrafast images.  J Womens Imaging. 2001;  3 89-93
  • 41 Lyons E A, Taylor P J, Zheng X H, Ballard G, Levi C S, Kredentser J V. Characterization of subendometrial myometrial contractions throughout the menstrual cycle in normal fertile women.  Fertil Steril. 1991;  55 771-774
  • 42 Ijland M M, Evers J L, Dunselman G A, Hoogland H J. Endometrial wavelike activity, endometrial thickness, and ultrasound texture in controlled ovarian hyperstimulation cycles.  Fertil Steril. 1998;  70 279-283
  • 43 Leyendecker G, Kunz G, Wildt L, Beil D, Deininger H. Uterine hyperperistalsis and dysperistalsis as dysfunctions of the mechanism of rapid sperm transport in patients with endometriosis and infertility.  Hum Reprod. 1996;  11 1542-1551
  • 44 de Vries K, Lyons E A, Ballard G, Levi C S, Lindsay D J. Contractions of the inner third of the myometrium.  Am J Obstet Gynecol. 1990;  162 679-682
  • 45 Oike K, Ishihara K, Kikuchi S. A study on the endometrial movement and serum hormonal level in connection with uterine contraction.  Nippon Sanka Fujinka Gakkai Zasshi. 1990;  42 86-92
  • 46 Brosens J J, Barker F G, de Souza N M. Myometrial zonal differentiation and uterine junctional zone hyperplasia in the non-pregnant uterus.  Hum Reprod Update. 1998;  4(5) 496-502
  • 47 Wiczyk H P, Janus C L, Richards C J et al.. Comparison of magnetic resonance imaging and ultrasound in evaluating follicular and endometrial development throughout the normal cycle.  Fertil Steril. 1988;  49(6) 969-972
  • 48 Noe M, Kunz G, Herbertz M, Mall G, Leyendecker G. The cyclic pattern of the immunocytochemical expression of oestrogen and progesterone receptors in human myometrial and endometrial layers: characterization of the endometrial-subendometrial unit.  Hum Reprod. 1999;  14(1) 190-197
  • 49 Brosens J, Campo R, Gordts S, Brosens I. Submucous and outer myometrium leiomyomas are two distinct clinical entities.  Fertil Steril. 2003;  79(6) 1452-1454
  • 50 Sampson J A. The blood supply of uterine myomata.  Surg Gynecol Obstet. 1912;  14 215-230
  • 51 Stewart E A, Nowak R A. Leiomyoma-related bleeding: a classic hypothesis updated for the molecular era.  Hum Reprod Update. 1996;  2 295-306
  • 52 Di Lieto A, De Falco M, Pollio F et al.. Clinical response, vascular change, and angiogenesis in gonadotropin-releasing hormone analogue-treated women with uterine myomas.  J Soc Gynecol Investig. 2005;  12(2) 123-128
  • 53 Mangrulkar R S, Ono M, Ishikawa M, Takashima S, Klagsbrun M, Nowak R A. Isolation and characterization of heparin-binding growth factors in human leiomyomas and normal myometrium.  Biol Reprod. 1995;  53 636-646
  • 54 Anania C A, Stewart E A, Quade B J, Hill J A, Nowak R A. Expression of the fibroblast growth factor receptor in women with leiomyomas and abnormal uterine bleeding.  Mol Hum Reprod. 1997;  3(8) 685-691
  • 55 Liu Y X, Gao F, Wei P et al.. Involvement of molecules related to angiogenesis, proteolysis and apoptosis in implantation in rhesus monkey and mouse.  Contraception. 2005;  71(4) 249-262
  • 56 Barbarisi A, Petillo O, Di Lieto A et al.. 17-beta estradiol elicits an autocrine leiomyoma cell proliferation: evidence for a stimulation of protein kinase-dependent pathway.  J Cell Physiol. 2001;  186(3) 414-424
  • 57 Liang M, Wang H, Zhang Y, Lu S, Wang Z. Expression and functional analysis of platelet-derived growth factor in uterine leiomyomata.  Cancer Biol Ther. 2006;  5(1) 28-33
  • 58 Jaber L, Kan F W. Non-identical distribution pattern of epidermal growth factor and platelet-derived growth factor in the mouse uterus during the oestrous cycle and early pregnancy.  Histochem J. 1998;  30(10) 711-722
  • 59 Weston G, Trajstman A C, Gargett C E, Manuelpillai U, Vollenhoven B J, Rogers P A. Fibroids display an anti-angiogenic gene expression profile when compared with adjacent myometrium.  Mol Hum Reprod. 2003;  9(9) 541-549
  • 60 Ingman W V, Robertson S A. Defining the actions of transforming growth factor beta in reproduction.  Bioessays. 2002;  24(10) 904-914
  • 61 Tamada H, McMaster M T, Flanders K C, Andrews G K, Dey S K. Cell type-specific expression of transforming growth factor-beta 1 in the mouse uterus during the periimplantation period.  Mol Endocrinol. 1990;  4(7) 965-972
  • 62 Feinberg R F, Kliman H J, Wang C L. Transforming growth factor-beta stimulates trophoblast oncofetal fibronectin synthesis in vitro: implications for trophoblast implantation in vivo.  J Clin Endocrinol Metab. 1994;  78(5) 1241-1248
  • 63 Irving J A, Lala P K. Functional role of cell surface integrins on human trophoblast cell migration: regulation by TGF-beta, IGF-II, and IGFBP-1.  Exp Cell Res. 1995;  217(2) 419-427
  • 64 Dou Q, Zhao Y, Tarnuzzer R W et al.. Suppression of transforming growth factor-beta (TGF beta) and TGF beta receptor messenger ribonucleic acid and protein expression in leiomyomata in women receiving gonadotropin-releasing hormone agonist therapy.  J Clin Endocrinol Metab. 1996;  81 3222-3230
  • 65 Leppert P C, Catherino W H, Segars J H. A new hypothesis about the origin of uterine fibroids based on gene expression profiling with microarrays.  Am J Obstet Gynecol. 2006;  195(2) 415-420
  • 66 Taylor H S. The role of HOX genes in human implantation.  Hum Reprod Update. 2000;  6(1) 75-79
  • 67 Taylor H S, Vanden Heuvel G B, Igarashi P. A conserved Hox axis in the mouse and human female reproductive system: late establishment and persistent adult expression of the Hoxa cluster genes.  Biol Reprod. 1997;  57(6) 1338-1345
  • 68 Block K, Kardana A, Igarashi P, Taylor H S. In utero diethylstilbestrol (DES) exposure alters Hox gene expression in the developing mullerian system.  FASEB J. 2000;  14(9) 1101-1108
  • 69 Taylor H S, Arici A, Olive D, Igarashi P. HOXA10 is expressed in response to sex steroids at the time of implantation in the human endometrium.  J Clin Invest. 1998;  101(7) 1379-1384
  • 70 Cermik D, Arici A, Taylor H S. Coordinated regulation of HOX gene expression in myometrium and uterine leiomyoma.  Fertil Steril. 2002;  78(5) 979-984
  • 71 Rackow B W, Taylor H S. Uterine leiomyomas affect endometrial HOXA10 expression.  J Soc Gynecol Investig. 2006;  13(2) 280A

Hilary O.D CritchleyM.D. 

Division of Reproductive and Developmental Sciences, The University of Edinburgh Centre for Reproductive Biology, The Queen's Medical Research Institute

47 Little France Crescent, Edinburgh EH16 4TJ, United Kingdom

Email: hilary.critchley@ed.ac.uk

    >