Semin Reprod Med 2007; 25(6): 405-409
DOI: 10.1055/s-2007-991037
PREFACE

© Thieme Medical Publishers

Physiology and Pathology of Implantation in the Human and Nonhuman Primate

Asgerally T. Fazleabas1  Guest Editor 
  • 1Department of Obstetrics & Gynecology, University of Illinois College of Medicine, Chicago, Illinois
Further Information

Publication History

Publication Date:
25 October 2007 (online)

ABSTRACT

Infertility affects 10 to 15% of the general population, and although advances in assisted reproductive therapies have had a major input, pregnancy rates continue to be relatively low. This has lead to an increasing interest in understanding the interaction between the embryo and the endometrium during the window of implantation. Multiple experimental approaches have been used to evaluate the morphological, cellular, and molecular changes in the endometrium during the normal menstrual cycle and as a consequence of numerous benign gynecological diseases that contribute to infertility. Successful implantation requires interplay between the embryo and the endometrium during a very narrow window of time within the menstrual cycle. Given that there are limitations to evaluating this intricate dialog in the human, nonhuman primates serve as a valuable model by which to obtain insights into this critical period of uterine receptivity. Articles in this issue provide a comprehensive summary of approaches to understand the complex biology that is required for successful implantation, and the potential adverse consequences of ovarian hyperstimulation and benign gynecological diseases on uterine receptivity and embryo implantation.

REFERENCES

  • 1 Spandorfer S D, Davis O K, Barmat L I, Chung P H, Rosenwaks Z. Relationship between maternal age and aneuploidy in in vitro fertilization pregnancy loss.  Fertil Steril. 2004;  81 1265-1269
  • 2 Norwitz E R, Schust D J, Fisher S J. Implantation and the survival of early pregnancy.  N Engl J Med. 2001;  345 1400-1408
  • 3 Everett C. Incidence and outcome of bleeding before the 20th week of pregnancy: prospective study from general practice.  BMJ. 1997;  315 32-34
  • 4 Wilcox A J, Baird D D, Weinberg C R. Time of implantation of the conceptus and loss of pregnancy.  N Engl J Med. 1999;  340 1796-1799
  • 5 Wang X, Chen C, Wang L, Chen D, Guang W, French J. Conception, early pregnancy loss, and time to clinical pregnancy: a population-based prospective study.  Fertil Steril. 2003;  79 577-584
  • 6 Nybo Andersen A M, Wohlfahrt J, Christens P, Olsen J, Melbye M. Maternal age and fetal loss: population based register linkage study.  BMJ. 2000;  320 1708-1712
  • 7 Tabibzadeh S. Molecular control of the implantation window.  Hum Reprod Update. 1998;  4 465-471
  • 8 Muyan M, Boime I. Secretion of chorionic gonadotropin from human trophoblasts.  Placenta. 1997;  18 237-241
  • 9 Niswender G D, Juengel J L, Silva P J, Rollyson M K, McIntush E W. Mechanisms controlling the function and life span of the corpus luteum.  Physiol Rev. 2000;  80 1-29
  • 10 Cameo P, Szmidt M, Strakova Z, Mavrogianis P, Sharpe-Timms K L, Fazleabas A T. Decidualization regulates the expression of the endometrial chorionic gonadotropin receptor in the primate.  Biol Reprod. 2006;  75 681-689
  • 11 Fazleabas A T, Donnelly K M, Srinivasan S, Fortman J D, Miller J B. Modulation of the baboon (Papio anubis) uterine endometrium by chorionic gonadotrophin during the period of uterine receptivity.  Proc Natl Acad Sci USA. 1999;  96 2543-2548
  • 12 Sherwin J R, Sharkey A M, Cameo P et al.. Identification of novel genes regulated by chorionic gonadotropin in baboon endometrium during the window of implantation.  Endocrinology. 2007;  148 618-626
  • 13 Lessey B A. Two pathways of progesterone action in the human endometrium: implications for implantation and contraception.  Steroids. 2003;  68 809-815
  • 14 Ma W G, Song H, Das S K, Paria B C, Dey S K. Estrogen is a critical determinant that specifies the duration of the window of uterine receptivity for implantation.  Proc Natl Acad Sci USA. 2003;  100 2963-2968
  • 15 Garcia E, Bouchard P, De Brux J et al.. Use of immunocytochemistry of progesterone and estrogen receptors for endometrial dating.  J Clin Endocrinol Metab. 1988;  67 80-87
  • 16 Carson D D, Lagow E, Thathiah A et al.. Changes in gene expression during the early to mid-luteal (receptive phase) transition in human endometrium detected by high-density microarray screening.  Mol Hum Reprod. 2002;  8 871-879
  • 17 Kao L C, Tulac S, Lobo S et al.. Global gene profiling in human endometrium during the window of implantation.  Endocrinology. 2002;  143 2119-2138
  • 18 Adams E C, Hertig A T, Rock J. A description of 34 human ova within the first 17 days of development.  Am J Anat. 1956;  98 435-493
  • 19 Enders A C, Schlafke S, Hendrickx A G. Differentiation of the embryonic disc, amnion, and yolk sac in the rhesus monkey.  Am J Anat. 1986;  177 161-185
  • 20 Lee K Y, DeMayo F J. Animal models of implantation.  Reproduction. 2004;  128 679-695
  • 21 Dey S K, Lim H, Das S K et al.. Molecular cues to implantation.  Endocr Rev. 2004;  25 341-373
  • 22 Fazleabas A T, Kim J J, Srinivasan S. Implantation in the baboon: endometrial responses.  Semin Reprod Endocrinol. 1999;  17 257-265
  • 23 Lobo S C, Srisuparp S, Peng X, Fazleabas A T. Uterine receptivity in the baboon: modulation by chorionic gonadotropin.  Semin Reprod Med. 2001;  19 69-74
  • 24 Srisuparp S, Strakova Z, Brudney A et al.. Signal transduction pathways activated by chorionic gonadotropin in the primate endometrial epithelial cells.  Biol Reprod. 2003;  68 457-464
  • 25 Banaszak S, Brudney A, Donnelly K, Chai D, Chwalisz K, Fazleabas A T. Modulation of the action of chorionic gonadotropin in the baboon (Papio anubis) uterus by a progesterone receptor antagonist (ZK 137. 316).  Biol Reprod. 2000;  63 820-825
  • 26 Christensen S, Verhage H G, Nowak G et al.. Smooth muscle myosin II and alpha smooth muscle actin expression in the baboon (Papio anubis) uterus is associated with glandular secretory activity and stromal cell transformation.  Biol Reprod. 1995;  53 598-608
  • 27 Rao C V. An overview of the past, present, and future of nongonadal LH/hCG actions in reproductive biology and medicine.  Semin Reprod Med. 2001;  19 7-17
  • 28 Reshef E, Lei Z M, Rao C V, Pridham D D, Chegini N, Luborsky J L. The presence of gonadotropin receptors in nonpregnant human uterus, human placenta, fetal membranes, and decidua.  J Clin Endocrinol Metab. 1990;  70 421-430
  • 29 Jasinska A, Strakova Z, Szmidt M, Fazleabas A T. Human chorionic gonadotropin and decidualization in vitro inhibits cytochalasin-D-induced apoptosis in cultured endometrial stromal fibroblasts.  Endocrinology. 2006;  147 4112-4121
  • 30 Lovely L P, Fazleabas A T, Fritz M A, McAdams D G, Lessey B A. Prevention of endometrial apoptosis: randomized prospective comparison of human chorionic gonadotropin versus progesterone treatment in the luteal phase.  J Clin Endocrinol Metab. 2005;  90 2351-2356
  • 31 Kim J J, Jaffe R C, Fazleabas A T. Blastocyst invasion and the stromal response in primates.  Hum Reprod. 1999;  14(Suppl 2) 45-55
  • 32 Kim J J, Jaffe R C, Fazleabas A T. Insulin-like growth factor binding protein-1 expression in baboon endometrial stromal cells: regulation by filamentous actin and requirement for de novo protein synthesis.  Endocrinology. 1999;  140 997-1004
  • 33 Strakova Z, Mavrogianis P, Meng X et al.. In vivo infusion of interleukin-1beta and chorionic gonadotropin induces endometrial changes that mimic early pregnancy events in the baboon.  Endocrinology. 2005;  146 4097-4104
  • 34 Bentin-Ley U, Pedersen B, Lindenberg S, Larsen J F, Hamberger L, Horn T. Isolation and culture of human endometrial cells in a three-dimensional culture system.  J Reprod Fertil. 1994;  101 327-332
  • 35 Mercader A, Garcia-Velasco J A, Escudero E, Remohi J, Pellicer A, Simon C. Clinical experience and perinatal outcome of blastocyst transfer after coculture of human embryos with human endometrial epithelial cells: a 5-year follow-up study.  Fertil Steril. 2003;  80 1162-1168
  • 36 Ponnampalam A P, Weston G C, Trajstman A C, Susil B, Rogers P A. Molecular classification of human endometrial cycle stages by transcriptional profiling.  Mol Hum Reprod. 2004;  10 879-893
  • 37 Punyadeera C, Dassen H, Klomp J et al.. Oestrogen-modulated gene expression in the human endometrium.  Cell Mol Life Sci. 2005;  62 239-250
  • 38 Talbi S, Hamilton A E, Vo K C et al.. Molecular phenotyping of human endometrium distinguishes menstrual cycle phases and underlying biological processes in normo-ovulatory women.  Endocrinology. 2006;  147 1097-1121
  • 39 Borthwick J M, Charnock-Jones D S, Tom B D et al.. Determination of the transcript profile of human endometrium.  Mol Hum Reprod. 2003;  9 19-33
  • 40 Mirkin S, Arslan M, Churikov D et al.. In search of candidate genes critically expressed in the human endometrium during the window of implantation.  Hum Reprod. 2005;  20 2104-2117
  • 41 Riesewijk A, Martin J, van Os R et al.. Gene expression profiling of human endometrial receptivity on days LH + 2 versus LH + 7 by microarray technology.  Mol Hum Reprod. 2003;  9 253-264
  • 42 Burney R O, Talbi S, Hamilton A E et al.. Gene expression analysis of endometrium reveals progesterone resistance and candidate susceptibility genes in women with endometriosis.  Endocrinology. 2007;  148 3814-3828
  • 43 Horcajadas J A, Riesewijk A, Polman J et al.. Effect of controlled ovarian hyperstimulation in IVF on endometrial gene expression profiles.  Mol Hum Reprod. 2005;  11 195-205
  • 44 Fazleabas A T, Brudney A, Chai D, Langoi D, Bulun S E. Steroid receptor and aromatase expression in baboon endometriotic lesions.  Fertil Steril. 2003;  80(suppl 2) 820-827
  • 45 Fazleabas A T, Brudney A, Chai D, Mwenda J. Endometriosis in the baboon.  Gynecol Obstet Invest. 2004;  57 46-47
  • 46 Fazleabas A T, Brudney A, Gurates B, Chai D, Bulun S. A modified baboon model for endometriosis.  Ann N Y Acad Sci. 2002;  955 308-317 discussion 340-302 396-406
  • 47 Hastings J M, Fazleabas A T. A baboon model for endometriosis: implications for fertility.  Reprod Biol Endocrinol. 2006;  4(suppl 1) S7
  • 48 Hastings J M, Jackson K S, Mavrogianis P A, Fazleabas A T. The estrogen early response gene FOS is altered in a baboon model of endometriosis.  Biol Reprod. 2006;  75 176-182
  • 49 Gashaw I, Hastings J M, Jackson K S, Winterhager E, Fazleabas A T. Induced endometriosis in the baboon (Papio anubis) increases the expression of the proangiogenic factor CYR61 (CCN1) in eutopic and ectopic endometria.  Biol Reprod. 2006;  74 1060-1066
  • 50 Kim J J, Taylor H S, Lu Z et al.. Altered expression of HOXA10 in endometriosis: potential role in decidualization.  Mol Hum Reprod. 2007;  13 323-332
    >