Synlett 2007(15): 2456-2457  
DOI: 10.1055/s-2007-986636
SPOTLIGHT
© Georg Thieme Verlag Stuttgart · New York

Copper(I) Iodide

Vincent Coeffard*
Laboratoire de Synthèse Organique (LSO - UMR CNRS 6513), UFR des Sciences et des Techniques, Université de Nantes, 2 rue de la Houssinière, BP 92208, 44322 Nantes cedex 3, France
e-Mail: Vincent.Coeffard@univ-nantes.fr;
Further Information

Publication History

Publication Date:
28 August 2007 (online)

Introduction

The first recorded attempt at making an organocopper was Buckton’s use of diethylzinc on CuCl in the 1850s. [1] From that time, copper halides and consequently CuI have found widespread use in synthetic organic chemistry. Indeed, copper iodide, also called cuprous iodide, acts as a useful precursor of organocopper compounds which due to their unique chemoselectivity and reactivity occupy a special place in organic synthesis. [2-4] Furthermore, the ­effectiveness of CuI as catalyst or co-catalyst for cross-coupling reactions has been widely reported in the literature. [5] [6]

The utilisation of CuI also encompasses a broad range of chemical transformations like construction of hetero­cycles, [7-9] iodination reations, [10] click chemistry [11] or multi-component coupling reactions. [12-14]

CuI is commercially available as an off-white solid but samples with time are often tan due to impurities. A dissolution-precipitation process with water in the presence of NaI or KI is used to purify CuI. [15] [16] The colourless CuI is then stored under argon and protected from light to avoid decomposition.

    References

  • 1 Buckton GB. Ann. Chem. Pharm  1859,  109:  218 
  • 2 Lipshutz BH. Sengupta S. Org. React. (N. Y.)  1992,  41:  135 
  • 3 Taylor RJK. Organocopper Reagents: A Practical Approach   Oxford University Press; Oxford: 1994. 
  • 4 Krause N. Modern Organocopper Chemistry   Wiley-VCH; Weinheim: 2002. 
  • 5 Ley SV. Thomas AW. Angew. Chem. Int. Ed.  2003,  42:  5400 
  • 6 Mee SPH. Lee V. Baldwin JE. Chem. Eur. J.  2005,  11:  3294 
  • 7 Kel"in AV. Sromek AW. Gevorgyan V. J. Am. Chem. Soc.  2001,  123:  2074 
  • 8 Cavicchioli M. Marat X. Monteiro N. Hartmann B. Balme G. Tetrahedron Lett.  2002,  43:  2609 
  • 9 Patil NT. Yamamoto Y. J. Org. Chem.  2004,  69:  5139 
  • 10 Klapars A. Buchwald SL. J. Am. Chem. Soc.  2002,  124:  14844 
  • 11 Kolb HC. Finn MG. Sharpless KB. Angew. Chem. Int. Ed.  2001,  40:  2004 
  • 12 Hayes JF. Shipman M. Twin H. Chem. Commun.  2001,  1784 
  • 13 Bae I. Han H. Chang S. J. Am. Chem. Soc.  2005,  127:  2038 
  • 14 Sreedhar B. Reddy PS. Prakash BV. Ravindra A. Tetrahedron Lett.  2005,  46:  7019 
  • 15 Kauffman GB. Tetev LA. Inorg. Synth.  1963,  7:  9 
  • 16 Linstrumelle G. Krieger JK. Whitesides GM. Org. Synth.  1976,  55:  103 
  • 17 Coeffard V. Cintrat J.-C. Le Grognec E. Beaudet I. Quintard J.-P. J. Organomet. Chem.  2006,  691:  1488 
  • 18 Liebeskind LS. Fengl RW. J. Org. Chem.  1990,  55:  5359 
  • 19 Arvela RK. Leadbeater NE. Torenius HM. Tye H. Org. Biomol. Chem.  2003,  1:  1119 
  • 20 Taillefer M. Ouali A. Renard B. Spindler J.-F. Chem. Eur. J.  2006,  12:  5301 
  • 21 Girard C. Önen E. Aufort M. Beauvière S. Samson E. Herscovici J. Org. Lett.  2006,  8:  1689