Abstract
The mixed acid (H2 SO4 -HOAc) catalyzed ring opening of α,β-epoxyketone was the most used method for the
preparation of diosphenols, but it seriously suffered from poor yields and tedious
workup operations. By using silica gel supported mixed acid (H2 SO4 -HOAc), a variety of α,β-epoxyketones were converted into the corresponding diosphenols
in unprecedented high yields within a few minutes.
Key words
supported catalysis - regioselective - peroxides - ring opening - green chemistry
References and Notes
For selected references, see:
<A NAME="RW08607ST-1A">1a </A>
Murakami N.
Sugimoto M.
Kawanishi M.
Tamura S.
Kim H.-S.
Begum K.
Wataya Y.
Kobayashi M.
J. Med. Chem.
2003,
46:
638
<A NAME="RW08607ST-1B">1b </A>
Li A.
She X.
Zhang J.
Wu T.
Pan X.
Tetrahedron
2003,
59:
5737
<A NAME="RW08607ST-1C">1c </A>
Pena-Cabrera E.
Liebeskind LS.
J. Org. Chem.
2002,
67:
1689
<A NAME="RW08607ST-1D">1d </A>
Ottinger H.
Soldo T.
Hofmann T.
J. Agric. Food Chem.
2001,
49:
5383
<A NAME="RW08607ST-1E">1e </A>
Yin J.
Liebeskind LS.
J. Org. Chem.
1998,
63:
5726
<A NAME="RW08607ST-1F">1f </A>
Decosterd LA.
Ian CP.
Gustafson KR.
Cardellina JH.
McMahon JB.
Cragg GM.
Murata Y.
Pannell LK.
Steiner JR.
Clardy J.
Boyd MR.
J. Am. Chem. Soc.
1993,
115:
6673
<A NAME="RW08607ST-1G">1g </A>
Sasaki M.
Murae T.
Takahashi T.
J. Org. Chem.
1990,
55:
528
<A NAME="RW08607ST-1H">1h </A>
Kupchan SM.
Britton RW.
Sigel CW.
J. Org. Chem.
1973,
38:
178
For selected references, see:
<A NAME="RW08607ST-2A">2a </A>
Cepa MMDS.
Tavares da Silva EJ.
Correia-da-Silva G.
Roleira FMF.
Teixeira NAA.
J. Med. Chem.
2005,
48:
6379
<A NAME="RW08607ST-2B">2b </A>
Solorio CR.
Rodriguez-Cendejas CG.
Pena-Cabrera E.
ARKIVOC
2003,
(xi):
172
<A NAME="RW08607ST-2C">2c </A>
Ciobanu LC.
Boivin RP.
Luu-The V.
Poirier D.
Eur. J. Med. Chem.
2001,
36:
659
<A NAME="RW08607ST-2D">2d </A>
Li X.
Singh SM.
Cote J.
Laplante S.
Veilleux R.
Labrie F.
J. Med. Chem.
1995,
38:
1456
<A NAME="RW08607ST-2E">2e </A>
Brodie AMJ.
Steroid Biochem. Mol. Biol.
1994,
28:
788
For selected references, see:
<A NAME="RW08607ST-3A">3a </A>
Paju A.
Laos M.
Jogi A.
Paeri M.
Jaeaelaid R.
Pehk T.
Kanger T.
Lopp M.
Tetrahedron Lett.
2006,
47:
4491
<A NAME="RW08607ST-3B">3b </A>
Wu J.
Li H.
Sun L.
Dai W.-M.
Tetrahedron
2006,
62:
4643
<A NAME="RW08607ST-3C">3c </A>
Svennebring A.
Garg N.
Nilsson P.
Hallberg A.
Larhed M.
J. Org. Chem.
2005,
70:
4720
<A NAME="RW08607ST-3D">3d </A>
Loebel J.
Herdtweck E.
Bach T.
Eur. J. Org. Chem.
2003,
4146
<A NAME="RW08607ST-3E">3e </A>
Martinez R.
Jimenez-Vazquez HA.
Delgado F.
Tamariz J.
Tetrahedron
2003,
59:
481
<A NAME="RW08607ST-3F">3f </A>
Trost BM.
Schroeder GM.
J. Am. Chem. Soc.
2000,
122:
3785
<A NAME="RW08607ST-3G">3g </A>
Utaka M.
Kuriki H.
Sakai T.
Takeda A.
J. Org. Chem.
1986,
51:
935
<A NAME="RW08607ST-3H">3h </A>
Koreeda M.
Luengo JI.
J. Am. Chem. Soc.
1985,
107:
5572
<A NAME="RW08607ST-3I">3i </A>
Ponaras AA.
J. Org. Chem.
1983,
48:
3866
<A NAME="RW08607ST-3J">3j </A>
Dauben WG.
Ponaras AA.
Chollet A.
J. Org. Chem.
1980,
45:
4413
<A NAME="RW08607ST-4A">4a </A>
de Frutos O.
Atienza C.
Echavarren AM.
Eur. J. Org. Chem.
2001,
163
<A NAME="RW08607ST-4B">4b </A>
Ponaras AA.
Meah MY.
Tetrahedron Lett.
2000,
41:
9031
<A NAME="RW08607ST-4C">4c </A>
Paquette LA.
Wang TZ.
Vo NH.
J. Am. Chem. Soc.
1993,
115:
1676
<A NAME="RW08607ST-4D">4d </A>
Nagasawa K.
Matauda N.
Noguchi Y.
Yamanashi M.
Zako Y.
Shimizu I.
J. Org. Chem.
1993,
58:
1483
<A NAME="RW08607ST-4E">4e </A>
Becker D.
Birnbaum D.
J. Org. Chem.
1980,
45:
570
<A NAME="RW08607ST-5A">5a </A>
Harrity JPA.
Kerr WJ.
Middlemiss D.
Scott JS.
J. Organomet. Chem.
1997,
532:
219
<A NAME="RW08607ST-5B">5b </A>
Verma AK.
Gupta R.
Yadav MR.
Sharma N.
Jindal DP.
Indian J. Chem., Sect. B
1995,
34:
215
<A NAME="RW08607ST-5C">5c </A>
Haase-Held M.
Hatzis JM.
J. Chem. Soc., Perkin Trans. 1
1993,
2907
<A NAME="RW08607ST-5D">5d </A>
Lesuisse D.
Gourvest JF.
Hartmann C.
Benslimane TO.
Philibert D.
Vevert JP.
J. Med. Chem.
1992,
35:
1588
<A NAME="RW08607ST-5E">5e </A>
Lesuisse D.
Gourvest JF.
Hartmann C.
Benslimane TO.
Philibert D.
Vevert JP.
J. Med. Chem.
1992,
35:
1588
<A NAME="RW08607ST-5F">5f </A>
Mastalerz H.
Morand P.
J. Org. Chem.
1981,
46:
1206
<A NAME="RW08607ST-5G">5g </A>
Jennings BH.
Bengtson JM.
Steroids
1978,
31:
49
<A NAME="RW08607ST-6A">6a </A>
Tavares da Silva EJ.
Roleira FMF.
Sáe Melo ML.
Campos Neves AS.
Paixao JA.
de Almeida MJ.
Silva MR.
Andrade LCR.
Steroids
2002,
67:
311
<A NAME="RW08607ST-6B">6b </A>
Constantino MG.
Lacerda JV.
Aragao V.
Molecular
2001,
6:
770
<A NAME="RW08607ST-6C">6c </A>
Sankararaman S.
Nesakumar J.
J. Chem. Soc., Perkin Trans. 1
1999,
3173
<A NAME="RW08607ST-6D">6d </A>
Campos Neves AS.
Sáe Melo ML.
Moreno MJSM.
Tavares da Silva EJ.
Salvado JAR.
da Costa SP.
Martins RMLM.
Tetrahedron
1999,
55:
3255
<A NAME="RW08607ST-6E">6e </A>
Bednarski PJ.
Nelson SD.
J. Med. Chem.
1989,
32:
203
<A NAME="RW08607ST-6F">6f </A>
Klix RC.
Bach RD.
J. Org. Chem.
1987,
52:
580
<A NAME="RW08607ST-6G">6g </A>
Schultz AG.
Lucci RD.
Napier JJ.
Kinoshita H.
Ravichandran R.
Shannon P.
Yee YK.
J. Org. Chem.
1985,
50:
217
<A NAME="RW08607ST-7">7 </A>
Sleman S.
Eartham JF.
Quart. Rev.
1960,
14:
221
<A NAME="RW08607ST-8A">8a </A>
Reusch WR.
LeMahieu R.
J. Org. Chem.
1963,
28:
2443
<A NAME="RW08607ST-8B">8b </A>
Kawada K.
Kim M.
Watt DS.
Tetrahedron Lett.
1989,
30:
5985
<A NAME="RW08607ST-9A">9a </A>
Cao L.
Sun J.
Wang X.
Zhu R.
Shi H.
Hu Y.
Tetrahedron
2007,
63:
5036
<A NAME="RW08607ST-9B">9b </A>
Wang C.
Rath NP.
Covey DF.
Tetrahedron Lett.
2006,
47:
7837
<A NAME="RW08607ST-9C">9c </A>
Wang C.
Jiang X.
Shi H.
Lu J.
Hu Y.
Hu H.
J. Org. Chem.
2003,
68:
4579
<A NAME="RW08607ST-9D">9d </A>
Jiang X.
Wang C.
Hu Y.
Hu H.
Covey DF.
J. Org. Chem.
2000,
65:
3555
<A NAME="RW08607ST-10">10 </A>
Elings JA.
Lempers HB.
Sheldon RA.
Eur. J. Org. Chem.
2000,
1905
<A NAME="RW08607ST-11">11 </A>
Typical Procedure for the Preparation of 3d : The mixture of substrate 4d (1.0 g), the mixed acid [2.0 mL, H2 SO4 -HOAc (1:2 wt/wt)] and silica gel (8.0 g) in THF (10 mL) was rotaevaporated in vacuum
(<15 mmHg) at 70 °C. After the solvent had been removed, the reaction was continued
for another 3 min. The resultant non-stick solid was then washed with CH2 Cl2 and the combined organic layers were washed with aq Na2 CO3 , brine and dried over Na2 SO4 . Removal of the solvent yielded the crude product, which was purified by chromatography
to give the pure product 3d (0.81 g, 81%) as white crystals; mp 88-90 °C (EtOAc-PE); [α]D
20 +277.86° (c = 1.20, CHCl3 ). IR: 3386, 2958, 2937, 2871, 1739, 1661 cm-1 . 1 H NMR: δ = 6.17 (s, 1 H), 3.02-3.06 (m, 1 H), 2.61-2.75 (m, 4 H), 2.39-2.46 (m, 1
H), 2.07-2.09 (m, 1 H), 1.90-1.92 (m, 1 H), 1.32 (s, 3 H). 13 C NMR: δ = 217.4, 193.7, 141.3, 137.2, 48.4, 35.7, 31.7, 29.6, 21.1, 20.7. MS: m /z (%) = 180 (100), 152 (21), 137 (19), 110 (19), 109 (35), 95 (18), 81 (31), 67 (34),
55 (23), 39 (28). Anal. Calcd for C10 H12 O3 : C, 66.65; H, 6.71. Found: C, 66.58; H, 6.70. The same proce-dure was efficiently
used to convert the substrates 4a -j into the corresponding products 3a -j (see Table
[2 ]
). Products 3a -j are known compounds and their 1 H NMR and 13 C NMR spectra are available upon request from the authors.