References and Notes
1a
Fleet GWJ.
Karpas A.
Dwek RA.
Fellows LE.
Tyms AS.
Petursson S.
Namgoong SK.
Ramsden NG.
Smith PW.
Son JC.
Wilson F.
Witty DR.
Jacob GS.
Rademacher TW.
FEBS Lett.
1998,
237:
128
1b
Taylor DL.
Sunkara P.
Liu PS.
Kang MS.
Bowlin TL.
Tyms AS.
AIDS
1991,
5:
693
2a
Nishimura Y.
Studies in Natural Products Chemistry
Vol. 16:
.
Elsevier;
Amsterdam:
1995.
p.75-121
2b
Gross PE.
Baker MA.
Carver JP.
Dennis JW.
Clin. Cancer. Res.
1995,
1:
935
3a
Horii S.
Fukase H.
Matsuo T.
Kameda Y.
Asano N.
Matsui K.
J. Med. Chem.
1986,
29:
1038
3b
Robinson KM.
Begovic ME.
Reinhart BL.
Heineke EW.
Ducep J.-B.
Kastner PR.
Marshall FN.
Danzin C.
Diabetes
1991,
40:
825
4
Asano N.
Glycobiology
2003,
13:
93R
5a
Nash RJ.
Watson AA.
Asano N. In
Alkaloids: Chemical and Biological Perspectives
Vol. 11:
Pelletier SW.
Elsevier;
Oxford:
1996.
p.345-376
5b
Elbein AD.
Molyneux RJ. In
Comprehensive Natural Products
Vol. 3:
Barton D.
Nakanishi K.
Elsevier;
New York:
1999.
p.129-160
6a
Horii S.
Fukase H.
Matsuo T.
Kameda Y.
Asano N.
Matsui K.
Drugs Future
1986,
11:
1039
6b
Horii S.
Fukase H.
Matsuo T.
Kameda Y.
Asano N.
Matsui K.
Drugs Future
1987,
12:
1157
7
Atwal KS.
Swanson BN.
Unger SE.
Floyd DM.
Moreland S.
Hedberg A.
O’Reily BC.
J. Med. Chem.
1991,
34:
806
8
Rovnyak GC.
Atwal KS.
Hedberg A.
Kimball SD.
Moreland S.
Gougoutas JZ.
O’Reily BC.
Schwartz J.
Malley MF.
J. Med. Chem.
1992,
35:
3254
9
Grover GJ.
Dzwonczyk S.
McMullen DM.
Normandin DE.
Parham CS.
Sleph PG.
Moreland S.
J. Cardiovasc. Pharmacol.
1995,
26:
289
10
Barrow JC.
Nantermet FG.
Selnick HG.
Glass KL.
Rittle KE.
Gilbert KF.
Steele TG.
Homnick CF.
Freidinger RM.
Ransom RW.
Kling P.
Reiss D.
Broten TP.
Schorn TW.
Chang RSL.
O’Malley SS.
Olah TV.
Ellis JD.
Barrish A.
Kassahun K.
Leppert P.
Nagarathnam D.
Forray C.
J. Med. Chem.
2000,
43:
2703
11a
Mayer TU.
Kapoor TM.
Haggarty SJ.
King RW.
Schreiber SL.
Mitchison TJ.
Science
1999,
286:
971
11b
Haggarty SJ.
Mayer TU.
Miyamoto DT.
Fathi R.
King RW.
Mitchison TJ.
Schreiber SL.
Chem. Biol.
2000,
7:
275
12
Patil AD.
Kumar NV.
Kokke WC.
Bean MF.
Freyer AJ.
De Brosse C.
Mai S.
Trunech A.
Faulkner DJ.
Carte B.
Breen AL.
Hertzberg RP.
Johnson RK.
Westley JW.
Potts BCN.
J. Org. Chem.
1995,
60:
1182
13
Biginelli P.
Gazz. Chim. Ital.
1893,
23:
360
14
Kappe CO.
Acc. Chem. Res.
2000,
33:
879
15
Dallinger D.
Stadler A.
Kappe CO.
Pure Appl. Chem.
2004,
76:
1017
16
Nilson BL.
Overman LE.
J. Org. Chem.
2006,
71:
7706
17
Dondoni A.
Massi A.
Acc. Chem. Res.
2006,
39:
451
18
Dondoni A.
Massi A.
Sabbatini S.
Bertolasi V.
J. Org. Chem.
2002,
67:
6979
19
Witczak ZJ.
Culhane JM.
Appl. Microbiol. Biotechmol.
2005,
69:
237
20
Kappe CO.
Eur. J. Med. Chem.
2000,
35:
1043
21
Yadav LDS.
Rai VK.
Synlett
2007,
1227
22
Yadav LDS.
Rai VK.
Tetrahedron Lett.
2006,
47:
395
23
Yadav LDS.
Yadav S.
Rai VK.
Green Chem.
2006,
8:
455
24
Yadav LDS.
Yadav S.
Rai VK.
Tetrahedron
2005,
61:
10013
25
Yadav LDS.
Kapoor R.
J. Org. Chem.
2004,
69:
8118
26
General Procedure for Iminosugar-Annulated Perhydropyrimidines 4 and 5:
A solvent-free mixture of oxazolone 1 (2.0 mmol), aldose 2 (2.0 mmol), urea/thiourea 3 (2.0 mmol) and Ce2(SO4)3 (0.114 g, 10 mol%) was taken in a 20-mL vial and subjected to MW irradiation for 8-13 min (Table
[1]
). After completion of the reaction as indicated by TLC, H2O (10 mL) was added to the reaction mixture and stirred for 10 min. The yellowish precipitate thus obtained was washed with H2O to give the crude product which was recrystallized from EtOH to afford a diastereomeric mixture (>94:<6; in the crude products the ratio was >91:<9, as determined by 1H NMR spectroscopy). The product on second recrystallization from EtOH furnished an analytically pure sample of a single diastereomer 4 or 5 (Table
[1]
). On the basis of comparison of J values with the literature ones,
[24]
[30-36]
the trans stereochemistry was assigned to 4 and 5, as the coupling constant (J
1,9a = 9.6 Hz) of the major trans isomer was higher than that for the minor cis diastereomer (J
1,9a = 4.8 Hz).
Characterization Data of Representative Compounds:
Compound 4a: pale yellow powder; mp 115-117 °C. IR (KBr): 3341, 3315, 3009, 1685, 1670, 1675, 1603, 1581, 1455 cm-1. 1H NMR (400 MHz, DMSO-d
6 + D2O): δ = 2.65 (dd, J
6ax,eq = 13.1 Hz, J
6ax,7 = 9.7 Hz, 1 H, H-6ax), 3.34 (ddd, J
7,8 = 9.3 Hz, J
6ax,7 = 9.7 Hz, J
6eq,7 = 3.7 Hz, 1 H, H-7), 3.70 (dd, J
7,8 = 9.3 Hz, J
8,9 = 9.2 Hz, 1 H, H-8), 3.92 (dd, J
6ax,eq = 13.1 Hz, J
6eq,7 = 3.7 Hz, 1 H, H-6eq), 4.11 (dd, J
8,9 = 9.2 Hz, J
9,9a = 9.5 Hz, 1 H, H-9), 5.05 (dd, J
1,9a = 9.6 Hz, J
9,9a = 9.5 Hz, 1 H, H-9a), 6.17 (d, J
1,9a = 9.6 Hz, 1 H, H-1), 7.19-7.83 (m, 5 H, ArH). 13C NMR (DMSO-d
6/TMS): δ = 25.5, 59.7, 69.5, 73.5, 74.5, 80.5, 126.9, 127.7, 129.2, 130.8, 132.5, 165.7, 167.8, 169.3. MS (FAB): m/z = 336 [MH+]. Anal. Calcd for C15H17N3O6: C, 53.73; H, 5.11; N, 12.53. Found: C, 53.47; H, 5.33; N, 12.89.
Compound 5a: pale yellow powder; mp 125-128 °C. IR (KBr): 3343, 3319, 3008, 1683, 1667, 1673, 1604, 1585, 1449 cm-1. 1H NMR (400 MHz, DMSO-d
6 + D2O): δ = 3.13 (ddd, J
6,7 = 9.7 Hz, J
1
′
a,6 = 5.8 Hz, J
1
′
b,6 = 2.5 Hz, 1 H, H-6), 3.35 (dd, J
7,8 = 9.4 Hz, J
6,7 = 9.7 Hz, 1 H, H-7), 3.50 (dd, J
1
′
a,1
′
b = 12.2 Hz, J
1
′
a,6 = 5.8 Hz, 1 H, Ha-1′), 3.69 (dd, J
7,8 = 9.4 Hz, J
8,9 = 9.3 Hz, 1 H, H-8), 3.81 (dd, J
1
′
a,1
′
b = 12.2 Hz, J
1
′
b,6 = 2.5 Hz, 1 H, Hb-1′), 4.14 (dd, J
8,9 = 9.3 Hz, J
9,9a = 9.4 Hz, 1 H, H-9), 4.99 (dd, J
1,9a = 9.5 Hz, J
9,9a = 9.4 Hz, 1 H, H-9a), 6.21 (d, J
1,9a = 9.5 Hz, 1 H, H-1), 7.08-7.85 (m, 5 H, ArH). 13C NMR (DMSO-d
6/TMS): δ = 25.9, 61.1, 66.9, 70.3, 73.5, 74.5, 79.9, 127.2, 128.3, 129.7, 131.5, 133.1, 165.2, 166.9, 169.1. MS (FAB): m/z = 366 [MH+]. Anal. Calcd for C16H19N3O7: C, 52.60; H, 5.24; N, 11.50. Found: C, 52.89; H, 5.59; N, 11.33.
27
General Procedure for 5-Aminoperhydropyrimidine-dione Analogues 9 and 10: Compound 4 or 5 (2.0 mmol) was refluxed in H2SO4-H2O (15 mL, 4:3) for 45 min in an oil bath. The reaction mixture was cooled, the desired products 9 or 10 were precipitated by adding concd NH4OH (specific gravity 0.88) under ice cooling and recrystallized from EtOH to obtain analytically pure samples of 9 and 10, respectively.
Characterization Data of Representative Compounds:
Compound 9a: pale yellow powder; mp 134-135 °C. IR (KBr): 3345, 3011, 1683, 1669, 1605, 1579, 1451 cm-1. 1H NMR (400 MHz, DMSO-d
6 + D2O): δ = 2.67 (dd, J
6ax,eq = 13.1 Hz, J
6ax,7h = 9.8 Hz, 1 H, H-6ax), 3.35 (ddd, J
7,8 = 9.3 Hz, J
6ax,7h = 9.8 Hz, J
6eq,7h = 3.8 Hz, 1 H, H-7), 3.73 (dd, J
7,8 = 9.3 Hz, J
8,9 = 9.3 Hz, 1 H, H-8), 3.95 (dd, J
6ax,eq = 13.1 Hz, J
6eq,7h = 3.8 Hz, 1 H, H-6eq), 4.09 (dd, J
8,9 = 9.3 Hz, J
9,9a = 9.5 Hz, 1 H, H-9), 5.04 (dd, J
1,9a = 9.7 Hz, J
9,9a = 9.5 Hz, 1 H, H-9a), 6.18 (d, J
1,9a = 9.7 Hz, 1 H, H-1). 13C NMR (DMSO-d
6/TMS): δ = 25.6, 60.1, 69.3, 73.7, 74.6, 80.8, 165.8, 167.9. MS (FAB): m/z = 232 [MH+]. Anal. Calcd for C8H13N3O5: C, 41.56; H, 5.67; N, 18.17. Found: C, 41.92; H, 5.49; N, 18.32.
Compound 10a: pale yellow powder; mp 151-153 °C. IR (KBr): 3344, 3009, 1685, 1671, 1601, 1583, 1453 cm-1. 1H NMR (400 MHz, DMSO-d
6 + D2O): δ = 3.15 (ddd, J
6,7 = 9.7 Hz, J
1
′
a,6 = 5.9 Hz, J
1
′
b,6 = 2.4 Hz, 1 H, H-6), 3.36 (dd, J
7,8 = 9.4 Hz, J
6,7 = 9.7 Hz, 1 H, H-7), 3.57 (dd, J
1
′
a,1
′
b = 12.1 Hz, J
1
′
a,6 = 5.9 Hz, 1 H, Ha-1′), 3.71 (dd, J
7,8 = 9.4 Hz, J
8,9 = 9.2 Hz, 1 H, H-8), 3.79 (dd, J
1
′
a,1
′
b = 12.1 Hz, J
1
′
b,6 = 2.4 Hz, 1 H, Hb-1′), 4.11 (dd, J
8,9 = 9.2 Hz, J
9,9a = 9.5 Hz, 1 H, H-9), 5.02 (dd, J
1,9a = 9.6 Hz, J
9,9a = 9.5 Hz, 1 H, H-9a), 6.23 (d, J
1,9a = 9.6 Hz, 1 H, H-1). 13C NMR (DMSO-d
6/TMS): δ = 26.0, 61.5, 67.0, 70.5, 73.6, 74.7, 80.2, 165.3, 167.2. MS (FAB): m/z = 262 [MH+]. Anal. Calcd for C9H15N3O6: C, 41.38; H, 5.79; N, 16.09. Found: C, 41.18; H, 5.58; N, 16.21.
28
Kappe CO.
J. Org. Chem.
1997,
62:
7201
29
General Procedure for Isolation of Michael Adducts 7a (
n = 3, X = O, R = H) and 7j (
n = 4, X = S, R = Ph) and Their Conversion into the Corresponding Sugar-Annulated Products 4a and 5d:
The procedure followed was the same as described above for the synthesis of 4 and 5 except that the time of MW irradiation in this case was 4-6 min instead of 8-13 min. The adducts 7 were recrystallized from EtOH to give a diastereomeric mixture (>94:<6; in the crude products the ratio was >91:<9, as determined by 1H NMR spectroscopy) which was again recrystallized from EtOH to obtain an analytical sample of 7a and 7j. The adducts 7a and 7j were assigned the anti stereochemistry as their 1H NMR spectra exhibited higher values of coupling constant (J
cyclicNCH,acyclicNCH = 9.9 Hz) than that of the very minor (<6%) diastereomer (syn, J
cyclicNCH,acyclicNCH = 4.4 Hz).
[24]
[30-36]
Finely powdered intermediate compounds 7a and 7j were MW irradiated for 4-7 min in the same way as described for the synthesis of 4 and 5 to give the corresponding sugar-annulated products 4a and 5d quantitatively.
Characterization Data of Representative Compounds:
Compound 7a: pale yellow powder; mp 102-104 °C. IR (KBr): 3148, 3011, 1773, 1677, 1603, 1585, 1455 cm-1. 1H NMR (400 MHz, DMSO-d
6 + D2O): δ = 4.07 (dd, J
1
′
,2
′ = 6.9 Hz, J
1
′
,acyclicNCH = 5.4 Hz, 1 H, H-1′), 4.19 (dd, J
4
′
Ha,Hb = 10.5 Hz, J
4
′
Hb,3
′ = 5.3 Hz, 1 H, Hb-4′), 4.39 (dd, J
1
′
,2
′ = 6.9 Hz, J
2
′
,
3
′ = 4.1 Hz, 1 H, H-2′), 4.67 (ddd, J
3,4
′
Hb = 5.3 Hz, J
3,4
′
Ha = 5.3 Hz, J
2
′
,
3
′ = 4.1 Hz, 1 H, H-3′), 4.85 (dd, J
4
′
Ha,Hb = 10.5 Hz, J
3,4
′
Ha = 5.3 Hz, 1 H, 4′-Ha), 5.03 (dd, J
1
′
,acyclicNCH = 5.4 Hz, J
cyclicNCH,acyclicNCH = 9.9 Hz, 1 H, acyclic NCH), 6.74 (d, J
cyclicNCH,acyclicNCH = 9.9 Hz, 1 H, cyclic NCH), 7.12-7.69 (m, 5 H, ArH). 13C NMR (DMSO-d
6): δ = 35.8, 64.9, 70.5, 71.5, 72.7, 73.5, 73.5, 74.6, 127.5, 128.3, 130.2, 132.9, 133.6, 167.5, 170.2. MS (FAB): m/z = 354 [MH+]. Anal. Calcd for C15H19N3O7: C, 50.99; H, 5.42; N, 11.89. Found: C, 50.79; H, 5.78; N, 11.63.
30
Jauk B.
Belaj F.
Kappe CO.
J. Chem. Soc., Perkin Trans. 1
1999,
307
31
Nishio T.
Konno Y.
Ori M.
Sakamoto M.
Eur. J. Org. Chem.
2001,
3553
32
Chiba T.
Nakai T.
Chem. Lett.
1987,
2187
33
Liao M.
Yao W.
Wang J.
Synthesis
2004,
2633
34
Evans DA.
Nelson JV.
Vogel E.
Taber TR.
J. Am. Chem. Soc.
1981,
103:
3099
35
Mukaiyama T.
Iwasawa N.
Chem. Lett.
1984,
753
36
Yadav LDS.
Rai VK.
Yadav S.
Tetrahedron
2006,
62:
5464