References and Notes
<A NAME="RU03207ST-1A">1a</A>
Takeda T.
Bull. Chem. Soc. Jpn.
2005,
78:
195
<A NAME="RU03207ST-1B">1b</A>
Takeda T.
Chem. Rec.
2007,
7:
24
<A NAME="RU03207ST-2">2</A>
Takeda T.
Tsubouchi A. In
Modern Carbonyl Olefination
Takeda T.
Wiley-VCH;
Weinheim:
2004.
p.151
<A NAME="RU03207ST-3A">3a</A>
Anderson DM.
Bristow GS.
Hitchcock PB.
Jasim HA.
Lappert MF.
Skelton BW.
J. Chem. Soc., Dalton Trans.
1987,
2843
<A NAME="RU03207ST-3B">3b</A>
Fuchibe K.
Iwasawa N.
Chem. Eur. J.
2003,
9:
905
<A NAME="RU03207ST-3C">3c</A>
Lalov AV.
Egorov MP.
Nefedov OM.
Cherkasov VK.
Ermolaev NL.
Piskunov AV.
Russ. Chem. Bull.
2005,
54:
807
<A NAME="RU03207ST-4">4</A>
Martin HC.
James NH.
Aitken J.
Gaunt JA.
Adams H.
Haynes A.
Organometallics
2003,
22:
4451
<A NAME="RU03207ST-5A">5a</A>
Dötz KH.
Tomuschat P.
Nieger M.
Chem. Ber./Recl.
1997,
130:
1605
<A NAME="RU03207ST-5B">5b</A>
Tomuschat P.
Kröner L.
Steckhan E.
Nieger M.
Dötz KH.
Chem. Eur. J.
1999,
5:
700
<A NAME="RU03207ST-5C">5c</A>
Fernández I.
Sierra MA.
Mancheño MJ.
Gómez-Gallego M.
Ricart S.
Organometallics
2001,
20:
4304
For examples, see:
<A NAME="RU03207ST-6A">6a</A>
Meier H.
Angew. Chem., Int. Ed. Engl.
1992,
31:
1399
<A NAME="RU03207ST-6B">6b</A>
Adam D.
Closs F.
Frey T.
Funhoff D.
Haarer D.
Ringsdorf H.
Schuhmacher P.
Siemensmeyer K.
Phys. Rev. Lett.
1993,
70:
457
<A NAME="RU03207ST-6C">6c</A>
Adam D.
Schuhmacher P.
Simmerer J.
Häussling L.
Siemensmeyer K.
Etzbach KH.
Ringsdorf H.
Haarer D.
Nature (London)
1994,
371:
141
<A NAME="RU03207ST-6D">6d</A>
Tanaka H.
Tokito S.
Taga Y.
Okada A.
Chem. Commun.
1996,
2175
<A NAME="RU03207ST-6E">6e</A>
Jiang D.-L.
Aida T.
Nature (London)
1997,
388:
454
<A NAME="RU03207ST-6F">6f</A>
Kraft A.
Grimsdale AC.
Holmes AB.
Angew. Chem. Int. Ed.
1998,
37:
402
<A NAME="RU03207ST-6G">6g</A>
Martin RE.
Diederich F.
Angew. Chem. Int. Ed.
1999,
38:
1350
<A NAME="RU03207ST-6H">6h</A>
Friend RH.
Gymer RW.
Holmes AB.
Burroughes JH.
Marks RN.
Taliani C.
Bradley DDC.
Dos Santos DA.
Brédas JL.
Lögdlund M.
Salaneck WR.
Nature (London)
1999,
397:
121
<A NAME="RU03207ST-6I">6i</A>
Balzani V.
Ceroni P.
Gestermann S.
Kauffmann C.
Gorka M.
Vögtle F.
Chem. Commun.
2000,
853
<A NAME="RU03207ST-6J">6j</A>
Segura JL.
Martín N.
J. Mater. Chem.
2000,
10:
2403
<A NAME="RU03207ST-6K">6k</A>
Fechtenkötter A.
Tchebotareva N.
Watson M.
Müllen K.
Tetrahedron
2001,
57:
3769
<A NAME="RU03207ST-6L">6l</A>
Kwok CC.
Wong MS.
Macromolecules
2001,
34:
6821
<A NAME="RU03207ST-6M">6m</A>
Li CL.
Shien SJ.
Lin SC.
Liu RS.
Org. Lett.
2003,
5:
1131
<A NAME="RU03207ST-6N">6n</A>
Takahashi M.
Odagi T.
Tomita H.
Oshikawa T.
Yamashita M.
Tetrahedron Lett.
2003,
44:
2455
<A NAME="RU03207ST-6O">6o</A>
Kan Y.
Wang L.
Duan L.
Hu Y.
Wu G.
Qiu Y.
Appl. Phys. Lett.
2004,
84:
1513
<A NAME="RU03207ST-6P">6p</A>
Wex B.
Kaafarani BR.
Schroeder R.
Majewski LA.
Burckel P.
Grell M.
Neckers DC.
J. Mater. Chem.
2006,
16:
1121
<A NAME="RU03207ST-6Q">6q</A>
Padmaperuma AB.
Sapochak LS.
Burrows PE.
Chem. Mater.
2006,
18:
2389
<A NAME="RU03207ST-6R">6r</A>
Saito G.
Yoshida Y.
Bull. Chem. Soc. Jpn.
2007,
80:
1
<A NAME="RU03207ST-7A">7a</A>
Fischer EO.
Dötz KH.
J. Organomet. Chem.
1972,
36:
C4
<A NAME="RU03207ST-7B">7b</A>
Connor JA.
Rose PD.
Turner RM.
J. Organomet. Chem.
1973,
55:
111
<A NAME="RU03207ST-7C">7c</A>
Connor JA.
Day JP.
Turner RM.
J. Chem. Soc., Dalton Trans.
1976,
108
<A NAME="RU03207ST-7D">7d</A>
Nakamura E.
Tanaka K.
Aoki S.
J. Am. Chem. Soc.
1992,
114:
9715
<A NAME="RU03207ST-7E">7e</A>
Mak CC.
Chan KS.
J. Chem. Soc., Perkin Trans. 1
1993,
2143
<A NAME="RU03207ST-7F">7f</A>
Mak CC.
Tse MK.
Chan KS.
J. Org. Chem.
1994,
59:
3585
<A NAME="RU03207ST-7G">7g</A>
Scharrer E.
Brookhart M.
J. Organomet. Chem.
1995,
497:
61
<A NAME="RU03207ST-7H">7h</A>
Merlic CA.
Albaneze J.
Tetrahedron Lett.
1995,
36:
1007
<A NAME="RU03207ST-7I">7i</A>
Parisi M.
Solo A.
Wulff WD.
Guzei IA.
Rheingold AL.
Organometallics
1998,
17:
3696
<A NAME="RU03207ST-7J">7j</A>
Takeda T.
Nozaki N.
Fujiwara T.
Tetrahedron Lett.
1998,
39:
3533
<A NAME="RU03207ST-7K">7k</A>
Iwasawa N.
Saitou M.
Kusama H.
J. Organomet. Chem.
2001,
617:
741
<A NAME="RU03207ST-7L">7l</A>
Buck RT.
Coe DM.
Drysdale MJ.
Ferris L.
Haigh D.
Moody CJ.
Pearson ND.
Sanghera JB.
Tetrahedron: Asymmetry
2003,
14:
791
<A NAME="RU03207ST-8A">8a</A>
The titanacycle 6 was isolated by column chromatography over alumina gel (hexane-EtOAc, 98:2) under
N2, mp 85-87 °C. 1H NMR (300 MHz, CDCl3): δ = 4.88 (s, 2 H), 5.88 (s, 5 H), 6.44 (s, 5 H), 7.03-7.28 (m, 14 H). 13C NMR (75 MHz, CDCl3): δ = 58.7, 114.6, 115.8, 123.0, 124.1, 125.0, 125.6, 128.7, 142.4, 146.1. IR (KBr):
ν = 3057, 2914, 1579, 1476, 1439, 1085, 1022, 824, 739, 690 cm-1.
Lappert and co-workers reported the preparation of 2-titanaindane
[8b]
and meso-1,3-bis(trimethylsilyl)-2-titanaindane
[8c]
complexes. The NMR signals of the Cp rings of the latter titanacycle occur as two
singlets at δ = 4.46 and 5.23 ppm. The spectrum of 6 shows the protons of two Cp rings as two singlets at δ = 5.88 and 6.44 ppm, suggesting
that 6 has the meso configuration.
<A NAME="RU03207ST-8B">8b</A>
Bristow GS.
Lappert MF.
Martin TR.
Atwood JL.
Hunter WF.
J. Chem. Soc., Dalton Trans.
1984,
399
<A NAME="RU03207ST-8C">8c</A>
Lappert MF.
Raston CL.
Skelton BW.
White AH.
J. Chem. Soc., Dalton Trans.
1984,
893
<A NAME="RU03207ST-9">9</A>
General Procedure
Cp2TiCl2 (398 mg, 1.6 mmol), magnesium turnings (43 mg, 1.76 mmol), and finely powdered 4
Å MS (128 mg) were placed in a flask and dried by heating with a heat gun in vacuo
(2-3 mmHg). After cooling, THF (2.4 mL) and P(OEt)3 (0.55 mL, 3.2 mmol) were added successively with stirring under argon. During the
addition, the reaction mixture was cooled in a water bath so that the temperature
was maintained between 20 °C and 30 °C. After stirring for 3 h at 25 °C, a THF (1.0
mL) solution of the thioacetal 3c (108 mg, 0.2 mmol) was added. Then, a THF (4.0 mL) solution of 7b (261 mg, 0.8 mmol) was added dropwise over 10 min and the reaction mixture was stirred
for 3 h under reflux. The reaction was quenched by addition of 1 M NaOH and the insoluble
materials were filtered off through Celite® and washed with CHCl3. The layers were separated, and the aqueous layer was extracted with CHCl3. After the combined organic extracts were dried with Na2SO4 and concentrated, the remaining triethyl phosphate, formed by the oxidation of triethyl
phosphite, was removed by azeotropic distillation with MeOH. Purification of the residue
by PTLC on silica gel (hexane-CHCl3, 96:4) gave 8h as yellow crystals (102 mg, 64%), mp 130-132 °C. 1H NMR (300 MHz, CDCl3): δ = 0.96 (t, J = 7.4 Hz, 6 H), 0.99 (t, J = 7.4 Hz, 6 H), 1.41-1.59 (m, 8 H), 1.67-1.85 (m, 8 H), 3.94 (t, J = 6.2 Hz, 4 H), 3.96 (t, J = 6.1 Hz, 4 H), 6.70 (s, 2 H), 6.75-6.89 (m, 12 H), 7.07 (d, J = 8.4 Hz, 4 H), 7.20 (d, J = 8.4 Hz, 4 H). 13C NMR (75 MHz, CDCl3): δ = 13.8, 13.9, 19.2, 19.3, 31.3, 31.4, 67.6, 67.7, 114.1, 114.4, 125.8, 128.8,
129.0, 131.6, 136.0, 136.4, 141.6, 158.5, 158.8. IR (KBr): ν = 2956, 2932, 2871, 1604,
1570, 1509, 1467, 1390, 1284, 1247, 1175, 1146, 1111, 1070, 1027, 1010, 973, 834,
813, 617 cm-1. Anal. Calcd for C50H58O4: C, 83.06; H, 8.09. Found: C, 82.82; H, 8.12.
For recent examples, see:
<A NAME="RU03207ST-10A">10a</A>
Seferos DS.
Banach DA.
Alcantar NA.
Israelachvili JN.
Bazan GC.
J. Org. Chem.
2004,
69:
1110
<A NAME="RU03207ST-10B">10b</A>
Liu Z.-Q.
Fang Q.
Cao D.-X.
Wang D.
Xu G.-B.
Org. Lett.
2004,
6:
2933
<A NAME="RU03207ST-10C">10c</A>
Langa F.
Gomez-Escalonilla MJ.
Rueff J.-M.
Figueira Duarte TM.
Nierengarten J.-F.
Palermo V.
Samorì P.
Rio Y.
Accorsi G.
Armaroli N.
Chem. Eur. J.
2005,
11:
4405
<A NAME="RU03207ST-10D">10d</A>
Kim HM.
Yang WJ.
Kim CH.
Park W.-H.
Jeon S.-J.
Cho BR.
Chem. Eur. J.
2005,
11:
6386
<A NAME="RU03207ST-10E">10e</A>
Woo HY.
Liu B.
Kohler B.
Korystov D.
Mikhailovsky A.
Bazan GC.
J. Am. Chem. Soc.
2005,
127:
14721
<A NAME="RU03207ST-10F">10f</A>
Mcllroy SP.
Cló E.
Nikolajsen L.
Frederiksen PK.
Nielsen CB.
Mikkelsen KV.
Gothelf KV.
Ogilby PR.
J. Org. Chem.
2005,
70:
1134
<A NAME="RU03207ST-10G">10g</A>
Yao S.
Belfield KD.
J. Org. Chem.
2005,
70:
5126
<A NAME="RU03207ST-10H">10h</A>
Hwu JR.
Chuang K.-S.
Chuang SH.
Tsay S.-C.
Org. Lett.
2005,
7:
1545
<A NAME="RU03207ST-10I">10i</A>
Stuhr-Hansen N.
Sørensen JK.
Moth-Poulsen K.
Christensen JB.
Bjørnholm T.
Nielsen MB.
Tetrahedron
2005,
61:
12288
<A NAME="RU03207ST-10J">10j</A>
Kim O.-K.
Je J.
Melinger JS.
J. Am. Chem. Soc.
2006,
128:
4532
<A NAME="RU03207ST-10K">10k</A>
Iwaura R.
Hoeben FJM.
Masuda M.
Schenning APHJ.
Meijer EW.
Shimizu T.
J. Am. Chem. Soc.
2006,
128:
13298
<A NAME="RU03207ST-11A">11a</A>
Honor L.
Hoffmann H.
Klink W.
Ertel H.
Toscano VG.
Chem. Ber.
1962,
95:
581
<A NAME="RU03207ST-11B">11b</A>
Kauffman JM.
Moyna G.
J. Org. Chem.
2003,
68:
839
<A NAME="RU03207ST-11C">11c</A>
Plater MJ.
Jackson T.
Tetrahedron
2003,
59:
4673
<A NAME="RU03207ST-12A">12a</A>
Itami K.
Tonogaki K.
Ohashi Y.
Yoshida J.
Org. Lett.
2004,
6:
4093
<A NAME="RU03207ST-12B">12b</A>
Itami K.
Ohashi Y.
Yoshida J.
J. Org. Chem.
2005,
70:
2778
<A NAME="RU03207ST-12C">12c</A>
Itami K.
Yoshida J.
Bull. Chem. Soc. Jpn.
2006,
79:
811
<A NAME="RU03207ST-12D">12d</A>
Itami K.
Yoshida J.
Chem. Eur. J.
2006,
12:
3966