Planta Med 2007; 73(12): 1281-1284
DOI: 10.1055/s-2007-981615
Pharmacology
Letter
© Georg Thieme Verlag KG Stuttgart · New York

Protective Effect of Magnoflorine Isolated from Coptidis Rhizoma on Cu2+-Induced Oxidation of Human Low Density Lipoprotein

Tran Manh Hung1 , MinKyun Na1 , Byung Sun Min2 , Xinfeng Zhang3 , IkSoo Lee1 , Tran Minh Ngoc1 , Phuong Thien Thuong1 , Dai-Eun Sok1 , KiHwan Bae1
  • 1College of Pharmacy, Chungnam National University, Daejeon, Korea
  • 2College of Pharmacy, Catholic University of Daegu, Gyeongsan, Korea
  • 3School of Forestry and Bioscience Technology, ZheJiang Forestry University, Lin'an, ZheJiang, P. R. China
Further Information

Publication History

Received: March 31, 2007 Revised: June 29, 2007

Accepted: July 30, 2007

Publication Date:
20 September 2007 (online)

Abstract

The aim of this study was to investigate the antioxidant activity of magnoflorine, an alkaloid isolated from Coptidis Rhizoma, against the oxidation of native low density lipoprotein (LDL) and modified LDL. Magnoflorine was found to inhibit the copper-mediated (Cu2+) oxidation of LDL, as well as of glycated and glycoxidated LDL by increasing the lag time of conjugated diene formation and preventing the generation of thiobarbituric acid reactive substances (TBARS). In addition, the results from the fluorescence emission spectra of tryptophan (Trp) supported that the antioxidant activity of magnoflorine could be associated with the protective effect on the structural modification of apolipoprotein B (apoB) required for LDL oxidation. These results suggest that magnoflorine may be useful for preventing the oxidation of various LDL forms.

References

  • 1 Steiner C. Atherosclerosis, the major complication of diabetes.  Adv Exp Med Biol. 1985;  189 277-97.
  • 2 Steinberg D, Parthasarathy S, Carew T E, Khoo J D, Witztum J L. Beyond cholesterol: modification that increases its atherogenicity.  N Engl J Med. 1989;  320 915-24.
  • 3 Augustin A J, Breipohl W, Boker T, Lutz J, Spitznas M. Increased lipid peroxide levels and myeloperoxidase activity in the vitreous of patients suffering from proliferative diabetic retinopathy.  Graefes Arch Clin Exp Ophthalmol. 1993;  231 647-50.
  • 4 Asayama K, Hayashibe H, Dobashi K, Niitsu T, Miyao A, Kato K. Antioxidant enzyme status and lipid peroxidation in various tissues of diabetic and starved rats.  Diabetes Res. 1989;  12 85-91.
  • 5 Sobal G, Menzel E J, Sinzinger H. Why is glycated LDL more sensitive to oxidation than native LDL? - A comparative study.  Prostagland Leukot Essent Fatty Acids. 2000;  63 177-86.
  • 6 Yokozawa T, Ishida A, Cho E J, Nakagawa T. The effects of Coptidis Rhizoma extract on a hypercholesterolemic animal model.  Phytomedicine. 2003;  10 17-22.
  • 7 Chuang W C, Young D S, Liu L K, Sheu S J. Liquid chromatographic-electrospray mass spectrometric analysis of Coptidis Rhizoma.  J Chromatogr A. 1996;  755 19-26.
  • 8 Račková L, Májeková M, Košt'álová D, Štefek M ilan. Antiradical and antioxidant activities of alkaloids isolated from Mahonia aquifolium. Structural aspects.  Bioorg Med Chem. 2004;  12 4709-15.
  • 9 Hung T M, Lee J P, Min B S, Choi J S, Na M K, Zhang X F, Ngoc T M. et al . Magnoflorine from Coptidis Rhizoma protects high density lipoprotein during oxidant stress.  Biol Pharm Bull. 2007;  30 1157-60.
  • 10 Mori H, Fuchigami M, Inoue N, Nagai H, Koda A, Noshioka I. Principle of the bark of Phellodendron amurense to suppress the cellular immune response.  Planta Med. 1994;  60 445-9.
  • 11 Schleicher E, Deufel T, Wieland O H. Non-enzymatic glycosylation of human serum lipoproteins.  FEBS Lett. 1981;  129 1-4.
  • 12 Tames F J, Mackness M I, Arrol S, Laing I, Durrington P N. Non-enzymatic glycation of apolipoprotein B in the sera of diabetic and non-diabetic subjects.  Atherosclerosis. 1992;  93 237-44.
  • 13 Misciagna G, Logroscino G, De Michele G, Guerra V, Cisternino A M, Caruso M G. et al . Glycated apolipoprotein B and myocardial infarction.  Nutr Metab Cardiovasc Dis. 2007;  17 6-12.
  • 14 Lions T J. Glycation and oxidation: A role in the pathogenesis of atherosclerosis.  Am J Cardiol. 1993;  71 26-31.
  • 15 Santanam N, Penumetcha M, Speisky H, Parthasarathy S. A novel alkaloid antioxidant, Boldine and synthetic antioxidant, reduced form of RU486, inhibit the oxidation of LDL in-vitro and atherosclerosis in vivo in LDLR-/- mice.  Atherosclerosis. 2004;  173 203-10.
  • 16 Reyftmann J P, Santus R, Maziere J C, Morliere P, Salmon S, Candide C. et al . Sensitivity of tryptophan and related compounds to oxidation induced by lipid autoperoxidation. Application to human serum low-and high-density lipoproteins.  Biochim Biophys Acta. 1990;  1042 159-67.
  • 17 Smith P K, Krohn R I, Hermanson G T, Mallia A K, Gartner F H, Provenzano M D. et al . Measurement of protein using bicinchoninic acid.  Anal Biochem. 1985;  150 76-85.
  • 18 Buege J A, Aust S D. Microsomal lipid peroxidation.  Method Enzymol. 1978;  52 903-11.
  • 19 Puhl H, Waeg G, Esterbauer H. Methods to determine oxidation of low-density lipoproteins.  Method Enzymol. 1994;  233 425-41.
  • 20 Sobal G, Helmut S. Effect of simvastatin on the oxidation of native and modified lipoproteins.  Biochem Pharmacol. 2005;  70 1185-91.

Prof. KiHwan Bae

College of Pharmacy

Chungnam National University

Daejeon 305-764

Korea

Phone: +82-42-821-5925

Fax: +82-42-823-6566

Email: baekh@cnu.ac.kr

    >