Planta Med 2007; 73(10): 1081-1088
DOI: 10.1055/s-2007-981579
Pharmacology
Original Paper
© Georg Thieme Verlag KG Stuttgart · New York

In Vitro Activity of 10-Deacetylbaccatin III against Leishmania donovani Promastigotes and Intracellular Amastigotes

Katerina Georgopoulou1 , 2 , Despina Smirlis1 , Sylvia Bisti1 , Evangelia Xingi1 , Leandros Skaltsounis2 , Ketty Soteriadou1
  • 1Laboratory of Molecular Parasitology, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
  • 2Laboratory of Pharmacognosy and Pharmaceutical Chemistry, Department of Pharmacy, University of Athens, Athens, Greece
Weitere Informationen

Publikationsverlauf

Received: February 15, 2007 Revised: June 27, 2007

Accepted: July 2, 2007

Publikationsdatum:
09. August 2007 (online)

Abstract

Current treatments for leishmaniasis are unsatisfactory due to their route of administration, toxicity and expense but, most importantly, to the developed resistance of Leishmania to first-line drugs. Therefore, the identification of new effective targeted drugs is an urgent need. Since many studies have shown that medicinal plants contain compounds active against protozoa we have undertaken a study aiming to determine the antileishmanial activity of the taxoid 10-deacetylbaccatin III, isolated from dried needles and small branches of the European yew tree (Taxus baccata). Interestingly, 10-deacetylbaccatin III was found to selectively inhibit the growth of L. donovani intracellular amastigotes within J774 murine macrophages in vitro at nanomolar concentrations with an IC50 value of 70 nM. Concentrations of 10-deacetylbaccatin III as high as 5 μM did not affect J774 murine macrophages whereas 20 nM of taxol, used as a control, was toxic to macrophages. The compound also inhibited the growth of L. donovani promastigotes but at higher concentrations with a maximum level of inhibition of 35 %. Taxol inhibited promastigote growth at micromolar concentrations. Comparison of the effect of 10-deacetylbaccatin III to that of taxol on cell cycle progression and cellular morphology showed that their mechanisms of action are different. The 10-deacetylbaccatin III-treated promastigotes were slightly arrested in the G2/M phase whereas taxol-treated cells were blocked in the G2/M phase. In addition 10-deacetylbaccatin III treatment, contrary to taxol, did not affect cellular morphology.

Abbreviations

cpm: counts per minute

FITC: fluorescein isothiocyanate

h: hour

OD: optical density

PBS: phosphate buffered saline

SDS: sodium dodecyl sulphate

References

  • 1 Dujardin J C. Risk factors in the spread of leishmaniases: towards integrated monitoring?.  Trends Parasitol. 2006;  22 4-6.
  • 2 Alvar J, Yactayo S, Bern C. Leishmaniasis and poverty.  Trends Parasitol. 2006;  22 552-7.
  • 3 Murray H W, Berman J D, Davies C R, Saravia N G. Advances in leishmaniasis.  Lancet. 2005;  366 1561-77.
  • 4 Gramiccia M, Gradoni L. The current status of zoonotic leishmaniases and approaches to disease control.  Int J Parasitol. 2005;  35 1169-80.
  • 5 Croft S L, Sundar S, Fairlamb A H. Drug resistance in leishmaniasis.  Clin Microbiol Rev. 2006;  19 111-26.
  • 6 Sundar S, Rai M. Treatment of visceral leishmaniasis.  Expert Opin Pharmacother. 2005;  6 2821-9.
  • 7 Sundar S, Gupta L B, Makharia M K, Singh M K, Voss A, Rosenkaimer F. et al . Oral treatement of visceral leishmaniasis with miltefosine.  Ann Trop Med Parasitol. 1999;  93 589-97.
  • 8 Jha T K, Sundar S, Thakur C P, Bachman P, Karbwang J, Fischer C. et al . Miltefosine, an oral agent for the treatment of Indian visceral leishmaniasis.  N Engl J Med. 1999;  9 1975-80.
  • 9 Ritmeijer K, Dejenie A, Assefa Y, Hundle T B, Mesure J, Boots G. et al . A comparison of miltefosine and sodium stibogluconate for treatment of visceral leishmaniasis in an Ethiopian population with high prevalence of HIV infection.  Clin Infect Dis. 2006;  43 357-64.
  • 10 Rocha L G, Almeida J R, Macedo R O, Barbosa-Filho J M. A review of natural products with antileishmanial activity.  Phytomedicine. 2005;  12 514-35.
  • 11 Salem M M, Werbovetz K A. Natural products from plants as drug candidates and lead compounds against leishmaniasis and trypanosomiasis.  Curr Med Chem. 2006;  13 2571-98.
  • 12 Rowinsky E K, Donehower R C. The clinical pharmacology and use of antimicrotubule agents in cancer chemotherapeutics.  Pharmacol Ther. 1991;  5 35-84.
  • 13 Guchelaar H J, Ten Napel C HH, de Vries E GE, Mulder N H. Clinical, toxicological and pharmaceutical aspects of the antineoplasmatic drug taxol: A review.  Clin Oncol. 1994;  6 40-8.
  • 14 Bergstralh D T, Jenny P, Ting Y. Microtubule stabilizing agents: Their molecular signaling consequences and the potential for enhancement by drug combination.  Cancer Treat Rev. 2006;  32 166-79.
  • 15 Schiff P B, Horwitz S B. Taxol stabilizes microtubules in mouse fibroblast cells.  Proc Natl Acad Sci USA. 1980;  77 1561-5.
  • 16 Makowski L. Electron crystallography. Taxol found on tubulin.  Nature. 1995;  375 361-2.
  • 17 Moulay L, Robert-Gero M, Brown S, Gendron M C, Tournier F. Sinefungin and taxol effects on cell cycle and cytoskeleton of Leishmania donovani promastigotes.  Exp Cell Res. 1996;  226 283-91.
  • 18 Kapoor P, Sachdeva M, Madhubala R. Effect of the microtubule stabilising agent taxol on leishmanial protozoan parasites in vitro .  FEMS Microbiol Lett. 1999;  176 429-35.
  • 19 Havens C G, Bryant N, Asher L. Cellular effects of leishmanial tubulin inhibitors on L. donovani .  Mol Biochem Parasitol. 2000;  110 223-36.
  • 20 Donghum L, Kyang-Chun K, Mahn-Joo K. Selective enzymatic acylation of 10-deacetylbaccatin III.  Tetrahedron Lett. 1998;  39 9039-42.
  • 21 Saicic R N, Matovic R, Cecovic Z. Semisynthesis of taxol an improved procedure for the isolation of 10-deacetylbaccatin III.  J Serb Chem Soc. 1999;  64 497-503.
  • 22 Kingston D G, Hawkins D R, Ovington L. New taxanes from Taxus brevifolia .  J Nat Prod. 1982;  45 466-70.
  • 23 Appendino G, Gariboldi P, Gabetta B, Pace R, Bombaredelli E, Viterbo D. 14β-Hydroxy-10-deacetylbaccatin III, a new taxane from Himmalayan yew. J Chem Soc 1992: 2925-9.
  • 24 Mikus J, Steverding D. A simple colorimetric method to screen drug cytotoxicity against Leishmania using the dye Alamar Blue.  Parasitol Int. 2000;  48 265-9.
  • 25 Papageorgiou F T, Soteriadou K P. Expression of a novel Leishmania gene encoding a histone H1-like protein in Leishmania major modulates parasite infectivity in vitro .  Infect Immun. 2002;  70 6976-86.
  • 26 Smirlis D, Bisti S N, Konidou G, Thiakaki M, Soteriadou K P. Leishmania histone H1 overexpression delays parasite cell - cycle progression parasite differentiation and reduces Leishmania infectivity in vivo .  Mol Microbiol. 2006;  60 1457-73.
  • 27 Kingston D G. The chemistry of taxol.  Pharmacol Ther. 1991;  52 1-34.
  • 28 Krawczyk E, Luczak M, Kniotek M, Nowaczyk M. Cytotoxic, antiviral (in vitro and in vivo), immunomodulatory activity and influence on mitotic divisions of three taxol derivatives: 10-deacetyl-baccatin III, methyl (N-benzoyl-(2′R,3′S)-3′-phenylisoserinate) and N-benzoyl-(2′R,3′S)-3′-phenylisoserine.  J Pharm Pharmacol. 2005;  57 791-7.
  • 29 Doherty T M, Sher A, Vogel S N. Paclitaxel (taxol) induced killing of Leishmania major in murine macrophages.  Infect Immun. 1998;  66 4553-6.
  • 30 Berkowitz S A, Wolff J. Intrinsic calcium sensitivity of tubulin polymerization. The contributions of temperature, tubulin concentration, and associated proteins.  J Biol Chem. 1981;  256 11 216-23.

Dr. Ketty Soteriadou

Laboratory of Molecular Parasitology

Department of Microbiology

Hellenic Pasteur Institute

127 Bas. Sofias Avenue

115 21 Athens

Greece

Telefon: +30-210-6478-841

Fax: +30-210-6423-498

eMail: ksoteriadou@pasteur.gr

    >