Planta Med 2007; 73(8): 742-747
DOI: 10.1055/s-2007-981548
Pharmacology
Original Paper
© Georg Thieme Verlag KG Stuttgart · New York

Effect of Chrysin and Natural Coumarins on UGT1A1 and 1A6 Activities in Rat and Human Hepatocytes in Primary Culture

Amina Chlouchi1 , Corinne Girard1 , Alexandre Bonet2 , Catherine Viollon-Abadie2 , 3 , 4 , Bruno Heyd3 , Georges Mantion3 , Hélène Martin2 , Lysiane Richert2 , 3 , 4
  • 1Laboratoire de Pharmacognosie, EA 3921 ”Optimisation Métabolique et Cellulaire”, IFR 133, UFR des Sciences Médicales et Pharmaceutiques, Besançon, France
  • 2Laboratoire de Biologie Cellulaire, EA 3921 ”Optimisation Métabolique et Cellulaire”, IFR 133, UFR des Sciences Médicales et Pharmaceutiques, Besançon, France
  • 3Service de Chirurgie Digestive et Vasculaire, CHU Jean Minjoz, EA 3921 ”Optimisation Métabolique et Cellulaire”, IFR 133, UFR des Sciences Médicales et Pharmaceutiques, Besançon, France
  • 4KaLy-Cell, Besançon, France
Further Information

Publication History

Received: June 8, 2006 Revised: May 9, 2007

Accepted: May 16, 2007

Publication Date:
28 June 2007 (online)

Abstract

Flavonoids and coumarins are naturally occurring compounds that are widely distributed in vegetables and have a broad pharmacological activity. Inducibility of UDP-glucuronosyltransferases (UGTs) by xenobiotics is well documented and can be considered beneficial for health. In particular, UGT1A1-dependent bilirubin conjugation plays a critical role in the detoxification of neurotoxic bilirubin and phenobarbital-mediated UGT1A1 induction therapy is commonly used in the treatment of unconjugated hyperbilirubinemic diseases such as Crigler-Najjar type II disease. In the present study, the effects of the flavone chrysin and six natural coumarins isolated from various Rutaceous plants on UGT1A6-dependent p-nitrophenol and/or UGT1A1-dependent bilirubin glucuronoconjugation activities were evaluated in cultured rat and human hepatocytes and compared to those of the prototypical UGT1A inducers β-naphthoflavone, phenobarbital and clofibric acid. After 3 days of treatment at a concentration of 25 μM, the pyranocoumarins avicennin and cis-avicennol, and the furocoumarins bergapten and imperatorin, increased by 2-fold UGT1A1-dependent activity, equivalent to the increases obtained with chrysin at 25 μM, whereas in the presence of the simple coumarins such as coumarin or umbelliferone, UGT1A1-dependent activity was not modified. In terms of structural requirements for UGT1A1 induction, the present study suggests that the B-ring (phenyl) for chrysin and the furan or pyran rings for coumarins are essential for the biological activity.

Abbreviations

BCA:bicinchoninic acid

Bili:biliribin

BSA:bovine serum albumin

CLO:clofibric acid

FCS:foetal calf serum

HBSS:Hank’s buffered salt solution

HEPES:4-(2-hydroxyethyl)piperazine-1-ethane sulfonic acid

NF:β-naphthoflavone

PB:Phenobarbital

PBS:phosphate buffered saline

PNP:p-nitrophenol

UDPGA:Uridine 5′-diphosphoglucuronic acid

UGTs:UD-glucuronosyltransferases

References

  • 1 Tukey R H. Human UDP-glucuronosylltransferases: metabolism, expression and disease.  Annu Rev Pharmacol Toxicol. 2000;  40 581-616.
  • 2 Tephly T R, Burchell B. UDP-glucuronosyltransferases: a family of detoxifying enzymes.  Trends Pharmacol Sci. 1990;  11 276-9.
  • 3 Embola C W, Sohn O S, Fiala E S, Weisburger J H. Induction of UDP-glucuronosyltransferase 1 (UDP-GT1) gene complex by green tea in male F344 rats.  Food Chem Toxicol. 2002;  40 841-4.
  • 4 Van der Logt E MJ, Roelofs H MJ, Nagengast F M, Peters W HM. Induction of rat hepatic and intestinal UDP-glucuronyltransferases by naturally occuring dietary anticarcinogens.  Carcinogenesis. 2003;  24 1651-6.
  • 5 Walle U K, Walle T. Induction of human UDP-glucuronosyltransferase UGT1A1 by flavonoids - structural requirements.  Drug Metab Dispos. 2002;  30 564-9.
  • 6 Moon Y J, Wang X, Morris M E. Dietary flavonoids: effect on xenobiotic and carcinogen metabolism.  Toxicol In Vitro. 2006;  20 187-210.
  • 7 Rosselli S, Maggio A, Bellone G, Formisano C, Basile A, Cicala C. et al . Antibacterial and anticoagulant activities of coumarins isolated from the flowers of Magydaris tomentosa .  Planta Med. 2007;  73 103-9.
  • 8 Hoult J RS, Paya M. Pharmacological and biochemical actions of simple coumarins: Natural products with therapeutic potentiel.  Gen Pharmacol. 1996;  27 713-22.
  • 9 Roux D, Muyard F, Girard C, Colombain M, Tillequin F, Waterman P G. et al . Phebaclavin I, a novel 3-prenylated coumarin, and trichoclin acetate, a new natural furocoumarin, from the aerial parts of Phebalium aff. tuberculosum (Rutaceae).  Nat Prod Res. 2006;  20 279-83.
  • 10 Girard C, Roux D, Muyard F, Colombain M, Bévalot F, Tillequin F. et al . Three new 3-substituted coumarins from the twigs of Rhadinothamnus rudis ssp. amblycarpus (Phebalium rude ssp. amblycarpum) (Rutaceae).  Z Naturforsch [B]. 2005;  60 561-4.
  • 11 Girard C, Muyard F, Colombain M, Tillequin F, Waterman P G, Bévalot F. Coumarins from Phebalium aff. brachycalyx .  Biochem Syst Ecol. 2005;  33 1195-201.
  • 12 Chlouchi A, Girard C, Bévalot F, Tillequin F, Waterman P G, Muyard F. Coumarins and furoquinoline alkaloids from Philotheca deserti var. deserti (Rutaceae).  Biochem Syst Ecol. 2006;  34 71-4.
  • 13 Carmichael J, DeGraff W G, Gazdar A F, Minna J D, Mitchell J B. Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing.  Cancer Res. 1987;  47 936-42.
  • 14 Binda D, Lasserre-Bigot D, Bonet A, Thomassin M, Come M P, Guinchard C. et al . Time course of cytochromes P450 decline during rat hepatocyte isolation and culture: effect of L-NAME.  Toxicol In Vitro. 2003;  17 59-67.
  • 15 David P, Viollon C, Alexandre E, Azimzadeh A, Nicod L, Wolf P. et al . Metabolic capacities in cultured human hepatocytes obtained by a new isolating procedure from non-wedge small liver biopsies.  Hum Exp Toxicol. 1998;  17 544-53.
  • 16 Chesné C, Guyomard C, Fautrel A, Poulain M G, Frémond B, De Jong H. et al . Viability and function in primary culture of adult hepatocytes from various animal species and human beings after cryopreservation.  Hepatology. 1993;  18 406-14.
  • 17 Richert L, Binda D, Hamilton G, Viollon-Abadie C, Alexandre E, Bigot-Lasserre D. et al . Evaluation of the effect of culture configuration on morphology, survival time, antioxidant status and metabolic capacities of cultured rat hepatocytes.  Toxicol In Vitro. 2002;  16 89-99.
  • 18 Viollon-Abadie C, Lasserre D, Debruyne E, Nicod L, Carmichael N, Richert L. Phenobarbital, β-naphtoflavone, clofibrate, and pregnenolone-16α-carbonitrile do not affect hepatic thyroid hormone UDP-glucuronosyltransferase activity, and thyroid gland function in mice.  Toxicol Appl Pharmacol. 1999;  155 1-12.
  • 19 Heirwegh K PM, Van Der Vijver M, Fevery J. Assay and properties of digitonin-activated bilirubin uridine diphosphate glucuronosyltransferase from rat liver.  Biochem J. 1972;  144 57-61.
  • 20 Smith P K, Krohn R I, Hermanson G T, Malia A K, Gartner F H, Provenzano M I. et al . Measurement of protein using bicinchoninic acid.  Anal Biochem. 1985;  150 76-85.
  • 21 Viollon-Abadie C, Bigot-Lasserre D, Nicod L, Carmichael N, Richert L. Effects of model inducers on thyroxine UDP-glucuronosyltransferase activity in vitro rat and mouse hepatocyte cultures.  Toxicol In Vitro. 2000;  14 504-12.
  • 22 Galijatovic A, Otake Y, Walle U K, Walle T. Induction of UDP-glucuronyltransferase by the flavonoids chrysin and quercetin in Caco-2 cells-potentiel role in carcinogen bioinactivation.  Pharm Res. 2001;  18 374-9.
  • 23 Walle U K, Walle T. Induction of human UDP-glucuronosyltransferase UGT1A1 by flavonoids - structural requirements.  Drug Metab Dispos. 2002;  30 564-9.
  • 24 Smith C M, Graham R A, Krol W L, Silver I S, Negishi M, Wang H. et al . Differential UGT1A1 induction by chrysin in primary human hepatocytes and HepG2 cells.  J Pharmacol Exp Ther. 2005;  315 1256-64.
  • 25 Richert L, Lamboley C, Viollon-Abadie C, Grass P, Hartmann N, Laurent S. et al . Effects of clofibric acid on mRNA expression profiles in primary cultures of rat, mouse and human hepatocytes.  Toxicol Appl Pharmacol. 2003;  191 130-46.
  • 26 Smith C M, Faucette S R, Wang H, Lecluyse E L. Modulation of UDP-glucuronosyltransferase 1A1 in primary human hepatocytes by prototypical inducers.  J Biochem Mol Toxicol. 2005;  19 96-108.
  • 27 Soars M G, Petullo D M, Eckstein J A, Kasper S C, Wrighton S A. An assessment of UDP-glucuronosyltransferase induction using primary human hepatocytes.  Drug Metab Dispos. 2004;  32 140-8.
  • 28 Ritter J K, Kessler F K, Thompson M T, Grove A D, Auyeung D J, Fisher R A. Expression and inducibility in the human bilirubin UGT-Glucuronosyltransferase UGT1A1 in liver and cultured primary hepatocytes: evidence for both genetic and environmental influences.  Hepatology. 1999;  30 476-84.

Dr. Corinne Girard

Laboratoire de Pharmacognosie

EA 3921 ”Optimisation Métabolique et Cellulaire”

UFR des Sciences Médicales et Pharmaceutiques

Place Saint-Jacques

25030 Besançon cedex

France

Phone: +33-3-8166-5559

Fax: +33-3-8166-5568

Email: corinne.girard@univ-fcomte.fr

    >