Aktuelle Urol 2007; 38(6): 455-462
DOI: 10.1055/s-2007-980149
Übersicht
© Georg Thieme Verlag Stuttgart · New York

Fluoreszenzdiagnostik und Photodynamische Therapie in der Urologie

Fluorescence Diagnosis and Photodynamic Therapy in UrologyH.  Stepp1 , R.  Waidelich2
  • 1Laser-Forschungslabor, LIFE-Zentrum, Klinikum der Universität München
  • 2Urologische Klinik, Klinikum der Universität München
Further Information

Publication History

Publication Date:
12 November 2007 (online)

Zusammenfassung

Als Domäne der Endoskopie ist die Urologie eines der bedeutendsten Forschungsgebiete für den Einsatz photodynamischer Verfahren. Im Jahr 2005 erreichte die lange, erfolgreiche Tradition der Photodynamik in der Urologie mit der Zulassung von Hexaminolävulinat (HAL, Hexvix®) für die Fluoreszenzzystoskopie einen weiteren Meilenstein. Bisher zeigen alle Studien eine höhere Sensitivität der Fluoreszenzzystoskopie im Vergleich mit der konventionellen Zystoskopie unter Weißlichtbetrachtung beim Tumornachweis, insbesondere bei der Detektion des Carcinoma in situ. Die Mehrzahl randomisierter, zweiarmiger Studien bescheinigt der Fluoreszenzzystoskopie zudem signifikant geringere Residualtumor- und Rezidivraten. Selektive Tumorfluoreszenz kann auch im Nierenparenchym und in der Prostata beobachtet werden. Eine intraoperative Fluoreszenzkontrolle könnte es damit erleichtern, hohe Raten von R0-Resektionen zu erzielen. Neben dem diagnostischen ist auch das therapeutische Potenzial der Photodynamik hervorzuheben. Es reicht von der Rezidivprophylaxe beim Harnblasenkarzinom bis zur interstitiellen Therapie des Prostatakarzinoms. Zur Photodynamischen Therapie des Harnblasenkarzinoms gibt es bereits klinische Erfahrungswerte, Studien in den anderen Anwendungsbereichen befinden sich derzeit in Vorbereitung. Mit einem Überblick über die Methode und die bisher erzielten klinischen Ergebnisse und Einschätzungen soll dem Leser die Basis für eine eigene Beurteilung an die Hand gegeben werden.

Abstract

Urology is a preferential domain of endoscopy and as such an important research field for photodynamic procedures. An important milestone in the long-lasting and successful history of “photodynamics” in urology is the European approval of hexaminolevulinate (HAL, Hexvix®) for fluorescence cystoscopy. All clinical studies carried out so far have demonstrated a significant increase in sensitivity of fluorescence versus standard cystoscopy for the detection of bladder cancer, especially concerning carcinoma in situ. The majority of the randomised, two-armed studies additionally show significantly reduced rates of residual tumour and recurrences. Tumor-selective fluorescence can also be observed in the kidney and prostate. Intraoperative fluorescence detection might thus simplify the achievement of high rates of R0 resections. Apart from the diagnostic potential of “photodynamics”, also some possible therapeutic indications will be mentioned, including photodynamic therapy of bladder cancer and prostate cancer. Whereas initial clinical experience has been obtained for photodynamic therapy of bladder cancer, clinical studies for other indications are currently being designed. By providing an overview over methods and procedures as well as hitherto the available clinical results, we hope to provide reader with a basis for obtaining his/her own judgement.

Literatur

  • 1 Haukaas S, Daehlin L, Maartmann-Moe H, Ulvik N M. The long-term outcome in patients with superficial transitional cell carcinoma of the bladder: a single-institutional experience.  BJU Int. 1999;  83 957-963
  • 2 Soloway M S, Sofer M, Vaidya A. Contemporary management of stage T1 transitional cell carcinoma of the bladder.  J Urol. 2002;  167 1573-1583
  • 3 Witjes J A. Bladder carcinoma in situ in 2003: state of the art.  Eur Urol. 2004;  45 142-146
  • 4 Jichlinski P. New diagnostic strategies in the detection and staging of bladder cancer.  Curr Opin Urol. 2003;  13 351-355
  • 5 Allison R R, Bagnato V S, Cuenca R, Downie G H, Sibata C H. The future of photodynamic therapy in oncology.  Future Oncol. 2006;  2 53-71
  • 6 Huang Z. A review of progress in clinical photodynamic therapy.  Technol Cancer Res Treat. 2005;  4 283-293
  • 7 Pottier R, Krammer B, Stepp H, Baumgartner R. (editors) .Photodynamic Therapy with ALA, A Clinical Handbook. Cambridge: RSC Publishing 2006
  • 8 Fotinos N, Campo M A, Popowycz F, Gurny R, Lange N. 5-Aminolevulinic acid derivatives in photomedicine: Characteristics, application and perspectives.  Photochem Photobiol. 2006;  82 994-1015
  • 9 Batlle A M. Porphyrins, porphyrias, cancer and photodynamic therapy - a model for carcinogenesis.  J Photochem Photobiol B. 1993;  20 5-22
  • 10 Marti A, Jichlinski P, Lange N. et al . Comparison of aminolevulinic acid and hexylester aminolevulinate induced protoporphyrin IX distribution in human bladder cancer.  J Urol. 2003;  170 428-432
  • 11 Tappeiner H V. Die photodynamische Erscheinung. In: Asher L, Spiro K (eds). Ergebnisse der Physiologie Wiesbaden: Verlag von J. F. Bergmann 1909: 698-741
  • 12 Jocham D, Staehler G, Baumgartner R, Unsold E. [Integral photodynamic therapy of multifocal bladder cancer. Initial clinical experiences].  Urologe A. 1985;  24 316-319
  • 13 Tappeiner H V, Jesionek A. Therapeutische Versuche mit fluoreszierenden Stoffen.  Muench Med Wochenschr. 1903;  47 2042-2044
  • 14 Dougherty T J. Photosensitization of malignant tumors.  Semin Surg Oncol. 1986;  2 24-37
  • 15 Nseyo U O, Dougherty T J, Boyle D G. et al . Whole bladder photodynamic therapy for transitional cell carcinoma of bladder.  Urology. 1985;  26 274-280
  • 16 Loidl W, Schmidbauer J, Susani M, Marberger M. Flexible cystoscopy assisted by hexaminolevulinate induced fluorescence: a new approach for bladder cancer detection and surveillance?.  Eur Urol. 2005;  47 323-326
  • 17 Witjes J A, Moonen P M, Heijden A G van der. Comparison of hexaminolevulinate based flexible and rigid fluorescence cystoscopy with rigid white light cystoscopy in bladder cancer: results of a prospective Phase II study.  Eur Urol. 2005;  47 319-322
  • 18 Jichlinski P, Guillou L, Karlsen S J. et al . Hexyl aminolevulinate fluorescence cystoscopy: new diagnostic tool for photodiagnosis of superficial bladder cancer - a multicenter study.  J Urol. 2003;  170 226-229
  • 19 Jocham D, Witjes F, Wagner S. et al . Improved detection and treatment of bladder cancer using hexaminolevulinate imaging: a prospective, phase III multicenter study.  J Urol. 2005;  174 862-866
  • 20 Hungerhuber E, Stepp H, Kriegmair M. et al . Seven years' experience with 5-aminolevulinic acid in detection of transitional cell carcinoma of the bladder.  Urology. 2007;  69 260-264
  • 21 Fradet Y, Grossman H B, Gomella L. et al . A comparison of hexaminolevulinate fluorescence cystoscopy and white light cystoscopy for the detection of carcinoma in situ in patients with bladder cancer: a phase III, multicenter study.  J Urol. 2007;  178 68-73
  • 22 Grossman H B, Gomella L, Fradet Y. et al . A phase III, multicenter comparison of hexaminolevulinate fluorescence cystoscopy and white light cystoscopy for the detection of superficial papillary lesions in patients with bladder cancer.  J Urol. 2007;  178 62-67
  • 23 Zaak D, Kriegmair M, Stepp H. et al . Endoscopic detection of transitional cell carcinoma with 5-aminolevulinic acid: results of 1012 fluorescence endoscopies.  Urology. 2001;  57 690-694
  • 24 Zaak D, Hungerhuber E, Schneede P. et al . Role of 5-aminolevulinic acid in the detection of urothelial premalignant lesions.  Cancer. 2002;  95 1234-1238
  • 25 Hendricksen K, Moonen P M, der Heijden A G, Witjes J A. False-positive lesions detected by fluorescence cystoscopy: any association with p53 and p16 expression?.  World J Urol. 2006;  24 597-601
  • 26 Filbeck T, Roessler W, Knuechel R, Straub M, Kiel H J, Wieland W F. 5-aminolevulinic acid-induced fluorescence endoscopy applied at secondary transurethral resection after conventional resection of primary superficial bladder tumors.  Urology. 1999;  53 77-81
  • 27 Grimbergen M C, Swol C F van, Jonges T G, Boon T A, Moorselaar R J van. Reduced specificity of 5-ALA induced fluorescence in photodynamic diagnosis of transitional cell carcinoma after previous intravesical therapy.  Eur Urol. 2003;  44 51-56
  • 28 Hartmann A, Moser K, Kriegmair M, Hofstetter A, Hofstaedter F, Knuechel R. Frequent genetic alterations in simple urothelial hyperplasias of the bladder in patients with papillary urothelial carcinoma.  Am J Pathol. 1999;  154 721-727
  • 29 Kriegmair M, Zaak D, Rothenberger K H. et al . Transurethral resection for bladder cancer using 5-aminolevulinic acid induced fluorescence endoscopy versus white light endoscopy.  J Urol. 2002;  168 475-478
  • 30 Riedl C R, Daniltchenko D, Koenig F, Simak R, Loening S A, Pflueger H. Fluorescence endoscopy with 5-aminolevulinic acid reduces early recurrence rate in superficial bladder cancer.  J Urol. 2001;  165 1121-1123
  • 31 Denzinger S, Burger M, Walter B. et al . Clinically relevant reduction in risk of recurrence of superficial bladder cancer using 5-aminolevulinic acid-induced fluorescence diagnosis: 8-year results of prospective randomized study.  Urology. 2007;  69 675-679
  • 32 Filbeck T, Pichlmeier U, Knuechel R, Wieland W F, Roessler W. Clinically relevant improvement of recurrence-free survival with 5-aminolevulinic acid induced fluorescence diagnosis in patients with superficial bladder tumors.  J Urol. 2002;  168 67-71
  • 33 Alken P, Siegsmund M, Gromoll-Bergmann K, Daffner P, Fenner W, Spelz J. A randomized controlled multicentre trial to compare the effects of transurethral resection of bladder carcinomas under 5-ALA induced fluorescence light to conventional white light. Poster presented at Annual EAU congress, March 21 - 24, 2007. Berlin, Germany 2007
  • 34 Babjuk M, Soukup V, Petrik R, Jirsa M, Dvoracek J. 5-aminolaevulinic acid-induced fluorescence cystoscopy during transurethral resection reduces the risk of recurrence in stage Ta/T1 bladder cancer.  BJU Int. 2005;  96 798-802
  • 35 Daniltchenko D I, Riedl C R, Sachs M D. et al . Long-term benefit of 5-aminolevulinic acid fluorescence assisted transurethral resection of superficial bladder cancer: 5-year results of a prospective randomized study.  J Urol. 2005;  174 2129-2133, discussion
  • 36 Penkoff H, Steiner H, Dajc-Sommerer E. et al .Transurethral Detection and Resection of Bladder Carcinomas Under White or 5-ALA Induced Fluorescence Light: Results of the First Double-Blind Placebo-Controlled Clinical Trial. Abstract 1085 presented at Annual AUA congress, May 19 - 24, 2007. Anaheim, CA 2007
  • 37 Rick K, Sroka R, Stepp H. et al . Pharmacokinetics of 5-aminolevulinic acid-induced protoporphyrin IX in skin and blood.  Journal of Photochemistry and Photobiology B: Biology. 1997;  40 313-319
  • 38 Klem B, Lappin G, Nicholson S. et al . Determination of the bioavailability of [14C]-hexaminolevulinate using accelerator mass spectrometry after intravesical administration to human volunteers.  J Clin Pharmacol. 2006;  46 456-460
  • 39 Colapaoli L, Thorsen J, Nopp A, Guttormsen A B. A case of anaphylactic shock possibly caused by intravesical Hexvix.  Acta Anaesthesiol Scand. 2006;  50 1165-1167
  • 40 Avritscher E B, Cooksley C D, Grossman H B. et al . Clinical model of lifetime cost of treating bladder cancer and associated complications.  Urology. 2006;  68 549-553
  • 41 Koenig F, Knittel J, Stepp H. Diagnosing cancer in vivo.  Science. 2001;  292 1401-1413
  • 42 Jichlinski P, Leisinger H J. Photodynamic therapy in superficial bladder cancer: past, present and future.  Urol Res. 2001;  29 396-405
  • 43 Beyer W. Systems for light application and dosimetry in photodynamic therapy.  J Photochem Photobiol B. 1996;  36 153-156
  • 44 Staveren H J van, Keijzer M, Keesmaat T. et al . Integrating sphere effect in whole-bladder wall photodynamic therapy: III. Fluence multiplication, optical penetration and light distribution with an eccentric source for human bladder optical properties.  Phys Med Biol. 1996;  41 579-590
  • 45 Beyer W, Waidelich R, Knuechel R, Stepp H, Baumgartner R, Hofstetter A. Technical concepts for white light photodynamic therapy of bladder cancer.  Medical Laser Application. 2002;  17 37-40
  • 46 Waidelich R, Beyer W, Knuechel R. et al . Whole bladder photodynamic therapy with 5-aminolevulinic acid using a white light source.  Urology. 2003;  61 332-337
  • 47 Jichlinski P. Photodynamic applications in superficial bladder cancer: facts and hopes!.  J Environ Pathol Toxicol Oncol. 2006;  25 441-451
  • 48 Waidelich R, Stepp H, Baumgartner R, Weninger E, Hofstetter A, Kriegmair M. Clinical experience with 5-aminolevulinic acid and photodynamic therapy for refractory superficial bladder cancer.  J Urol. 2001;  165 1904-1907
  • 49 Bader M, Zaak D, Stief C. et al .Photodynamic Therapy of bladder cancer - a phase I study using hexyl-aminolevulinate. Poster presented at Annual EAU congress, March 21 - 24, 2007. Berlin, Germany 2007
  • 50 Shackley D C, Briggs C, Gilhooley A. et al . Photodynamic therapy for superficial bladder cancer under local anaesthetic.  BJU Int. 2002;  89 665-670
  • 51 Tauber S, Stepp H, Meier R, Bone A, Hofstetter A, Stief C. Integral spectrophotometric analysis of 5-aminolaevulinic acid-induced fluorescence cytology of the urinary bladder.  BJU Int. 2006;  97 992-996
  • 52 Pytel A, Schmeller N. New aspect of photodynamic diagnosis of bladder tumors: fluorescence cytology.  Urology. 2002;  59 216-219
  • 53 Waidelich R, Hofstetter A, Stepp H, Baumgartner R, Weninger E, Kriegmair M. Early clinical experience with 5-aminolevulinic acid for the photodynamic therapy of upper tract urothelial tumors.  J Urol. 1998;  159 401-404
  • 54 Schneede P, Munch P, Wagner S, Meyer T, Stockfleth E, Hofstetter A. Fluorescence urethroscopy following instillation of 5-aminolevulinic acid: a new procedure for detecting clinical and subclinical HPV lesions of the urethra.  J Eur Acad Dermatol Venereol. 2001;  15 121-125
  • 55 Zaak D, Hofstetter A, Frimberger D, Schneede P. Recurrence of condylomata acuminata of the urethra after conventional and fluorescence-controlled Nd:YAG laser treatment.  Urology. 2003;  61 1011-1015
  • 56 Wang X L, Wang H W, Wang H S, Xu S Z, Liao K H, Hillemanns P. Topical 5-aminolaevulinic acid-photodynamic therapy for the treatment of urethral condylomata acuminata.  Br J Dermatol. 2004;  151 880-885
  • 57 Popken G, Wetterauer U, Schultze-Seemann W. Kidney-preserving tumor resection in renal cell carcinoma with photodynamic detection by 5-aminolaevulinic acid: preclinical and preliminary clinical results.  BJU Int. 1999;  83 578-582
  • 58 Frimberger D, Schneede P, Hungerhuber E. et al . Autofluorescence and 5-aminolevulinic acid induced fluorescence diagnosis of penile carcinoma - new techniques to monitor Nd:YAG laser therapy.  Urol Res. 2002;  30 295-300
  • 59 Pinthus J H, Bogaards A, Weersink R, Wilson B C, Trachtenberg J. Photodynamic therapy for urological malignancies: past to current approaches.  J Urol. 2006;  175 1201-1207
  • 60 Zaak D, Sroka R, Höppner M. et al . Photodynamic therapy by means of 5-ALA induced PPIX in human prostate cancer - Preliminary results.  Medical Laser Application. 2003;  18 91-95
  • 61 Zaak D, Sroka R, Stocker S. et al . Photodynamic therapy of prostate cancer by means of 5-aminolevulinic acid-induced protoporphyrin IX - In vivo experiments on the Dunning rat tumor model.  Urologia Internationalis. 2004;  72 196-202
  • 62 Moore C M, Nathan T R, Lees W R. et al . Photodynamic therapy using meso tetra hydroxy phenyl chlorin (mTHPC) in early prostate cancer.  Lasers Surg Med. 2006;  38 356-363
  • 63 Weersink R A, Bogaards A, Gertner M. et al . Techniques for delivery and monitoring of TOOKAD (WST09)-mediated photodynamic therapy of the prostate: clinical experience and practicalities.  J Photochem Photobiol B. 2005;  79 211-222
  • 64 Verigos K, Stripp D C, Mick R. et al . Updated results of a phase I trial of motexafin lutetium-mediated interstitial photodynamic therapy in patients with locally recurrent prostate cancer.  J Environ Pathol Toxicol Oncol. 2006;  25 373-387
  • 65 Zhou X, Pogue B W, Chen B. et al . Pretreatment photosensitizer dosimetry reduces variation in tumor response.  Int J Radiat Oncol Biol Phys. 2006;  64 1211-1220
  • 66 Jankun J, Keck R W, Skrzypczak-Jankun E, Lilge L, Selman S H. Diverse optical characteristic of the prostate and light delivery system: implications for computer modelling of prostatic photodynamic therapy.  BJU Int. 2005;  95 1237-1244
  • 67 Yu G, Durduran T, Zhou C. et al . Real-time in situ monitoring of human prostate photodynamic therapy with diffuse light.  Photochem Photobiol. 2006;  82 1279-1284
  • 68 Thompson M S, Johansson A, Johansson T. et al . Clinical system for interstitial photodynamic therapy with combined on-line dosimetry measurements.  Appl Opt. 2005;  44 4023-4031
  • 69 Schmidbauer J, Witjes F, Schmeller N, Donat R, Susani M, Marberger M. Improved detection of urothelial carcinoma in situ with hexaminolevulinate fluorescence cystoscopy.  J Urol. 2004;  171 135-138
  • 70 Lopatkin N A, Kamalov A A, Kudriavtsev I, Tokarev F V. [Fluorescent diagnostics of urinary bladder cancer].  Urologiia. 2000;  4 3-6
  • 71 Koenig F, McGovern F J, Larne R, Enquist H, Schomacker K T, Deutsch T F. Diagnosis of bladder carcinoma using protoporphyrin IX fluorescence induced by 5-aminolaevulinic acid.  BJU Int. 1999;  83 129-135
  • 72 Riedl C R, Plas E, Pfluger H. Fluorescence detection of bladder tumors with 5-amino-levulinic acid.  J Endourol. 1999;  13 755-759
  • 73 Filbeck T, Roessler W, Knuechel R, Straub M, Kiel H J, Wieland W F. Clinical results of the transurethreal resection and evaluation of superficial bladder carcinomas by means of fluorescence diagnosis after intravesical instillation of 5-aminolevulinic acid.  J Endourol. 1999;  13 117-121
  • 74 Kriegmair M, Baumgartner R, Knüchel R, Stepp H, Hofstaedter F, Hofstetter A. Detection of early bladder cancer by 5-aminolevulinic acid induced porphyrin fluorescence.  J Urol. 1996;  155 105-110
  • 75 Sim H G, Lau W K, Olivo M, Tan P H, Cheng C W. Is photodynamic diagnosis using hypericin better than white-light cystoscopy for detecting superficial bladder carcinoma?.  BJU Int. 2005;  95 1215-1218
  • 76 D'Hallewin M A, Bezdetnaya L, Guillemin F. Fluorescence detection of bladder cancer: a review.  Eur Urol. 2002;  42 417-425
  • 77 D'Hallewin M A, De Witte P A, Waelkens E, Merlevede W, Baert L. Fluorescence detection of flat bladder carcinoma in situ after intravesical instillation of hypericin.  J Urol. 2000;  164 349-351
  • 78 Kriegmair M, Baumgartner R, Lumper W. et al . Early clinical experience with 5-aminolevulinic acid for the photodynamic therapy of superficial bladder cancer.  Br J Urol. 1996;  77 667-671
  • 79 Berger A P, Steiner H, Stenzl A, Akkad T, Bartsch G, Holtl L. Photodynamic therapy with intravesical instillation of 5-aminolevulinic acid for patients with recurrent superficial bladder cancer: a single-center study.  Urology. 2003;  61 338-341

Dr. rer. biol. hum. Herbert Stepp

Laser-Forschungslabor am LIFE-Zentrum, Klinikum der Universität München-Großhadern

Marchioninistr. 23

81377 München

Phone: 089/70954880

Fax: 089/70954864

Email: herbert.stepp@med.uni-muenchen.de

    >