Fortschr Neurol Psychiatr 2008; 76(3): 174-180
DOI: 10.1055/s-2007-980145
Fort- und Weiterbildung
© Georg Thieme Verlag Stuttgart · New York

Die funktionelle Organisation des frontalen Kortex

Teil 2: Relevanz für neuropsychiatrische StörungsbilderFunctional Organisation of Frontal CortexPart 2: Relevance for Neuropsychiatric DisordersO.  Gruber1 , E.  K.  Diekhof1 , P.  Falkai1
  • 1Klinik für Psychiatrie und Psychotherapie, Georg-August-Universität Göttingen
Further Information

Publication History

Publication Date:
29 February 2008 (online)

Lernziele

Die systemischen Neurowissenschaften haben in den letzten Jahrzehnten unser Wissen über die verschiedenen Funktionen von Subregionen des frontalen Kortex deutlich erweitert. Auf der Grundlage der im 1. Teil dieses zweiteiligen Übersichtsartikels referierten Erkenntnisse zur funktionellen Organisation des Frontalhirns wird im vorliegenden 2. Teil ein Überblick über aktuelle Befunde aus hirnbildgebenden Studien zu einer Auswahl neuropsychiatrischer Störungsbilder gegeben. Hierbei werden auch einige Aspekte der Funktionsweise des menschlichen Gehirns skizziert, die eine eindeutige Zuordnung der bei psychiatrischen Patienten beobachtbaren Verhaltensvariationen zu morphologischen und physiologischen Frontalhirnveränderungen erschweren. Hierzu gehören die ausgeprägte funktionelle Heterogenität und gleichzeitige Multifunktionalität frontaler Kortizes und ferner ihre Rolle für die beim Menschen kognitiven Leistungen sowie neuropsychiatrischen Störungen. Die Lernziele des Artikels gliedern sich dementsprechend wie folgt:

Kritische Beurteilung bisheriger Ansätze, definierte „Struktur-Dysfunktions-Beziehungen” bei Patienten herzustellen Frontalhirndysfunktionen im Rahmen neurologischer Krankheitsbilder Frontalhirndysfunktionen im Rahmen psychiatrischer Krankheitsbilder Zusammenfassung und Ausblick.

Literatur

  • 1 Heilman K M, Watson R T. Intentional Motor Disorders. In: Levin HS, Eisenberg AL, Benton AL (eds). Frontal Lobe Function and Dysfunction. New York: Oxford University Press 1991: 199-213
  • 2 Fulton J F. Frontal Lobotomy and Affective Behavior. New York: Norton 1951
  • 3 Nagaratnam N, Nagaratnam K, Ng K, Diu P. Akinetic mutism following stroke.  J Clin Neurosci. 2004;  11 25-30
  • 4 Jeffries K J, Schooler C, Schoenbach C, Herscovitch P, Chase T N, Braun A R. The functional neuroanatomy of Tourette's syndrome. An FDG PET study III. Functional coupling of regional cerebral metabolic rates.  Neuropsychopharmacology. 2002;  27 92-104
  • 5 Ames D, Cummings J L, Wirshing W C, Quinn B, Mahler M. Repetitive and compulsive behavior in frontal lobe degenerations.  J Neuropsychiatry Clin Neurosci. 1994;  6 100-113
  • 6 Lombardi W J, Andreason P J, Sirocco K. et al . Wisconsin Card Sorting Test performance following head injury. Dorsolateral fronto-striatal circuit activity predicts perseveration.  J Clin Exp Neuropsychol. 1999;  21 2-16
  • 7 Freedman M, Black S, Ebert P, Binns M. Orbitofrontal function, object alternation and perseveration.  Cereb Cortex. 1998;  8 18-27
  • 8 Verfallie M, Heilman K M. Response preparation and response inhibition after lesions of the medial frontal lobe.  Arch Neurol. 1987;  44 1265-1271
  • 9 Alexander M P, Naeser M A, Palumbo C. Broca's area aphasias. Aphasia after lesions including the frontal operculum.  Neurology. 1990;  40 353-362
  • 10 Hadano K, Nakamura H, Hamanaka T. Effortful echolalia.  Cortex. 1998;  34 67-82
  • 11 Husain M, Kennard C. Visual neglect associated with frontal lobe infarction.  J Neurol. 1996;  243 652-657
  • 12 Narushima K, Kosier J T, Robinson R G. A reappraisal of poststroke depression, intra- and inter-hemispheric lesion location using meta-analysis.  J Neuropsychiatry Clin Neurosci. 2003;  15 422-430
  • 13 Starkstein S E, Fedoroff P, Berthier M L, Robinson R G. Manic-depressive and pure manic states after brain lesions.  Biol Psychiatry. 1991;  29 149-158
  • 14 Drevets W C. Functional neuroimaging studies of depression. The anatomy of melancholia.  Annu Rev Med. 1998;  49 341-361
  • 15 Ogai M, Iyo M, Mori N, Takei N. A right orbitofrontal region and OCD symptoms. A case report.  Acta Psychiatr Scand. 2005;  111 74-76
  • 16 Jaskiw G E, Kenny J F. Limbic cortical injury sustained during adulthood leads to schizophrenia-like syndrome.  Schizophr Res. 2002;  58 205-212
  • 17 Lopez-Larson M P, DelBello M P, Zimmerman M E, Schwiers M L, Strakowski S M. Regional prefrontal gray and white matter abnormalities in bipolar disorder.  Biol Psychiatry. 2002;  52 93-100
  • 18 Campbell S, MacQueen G. An update on regional brain volume differences associated with mood disorders.  Curr Opin Psychiatry. 2006;  19 25-33
  • 19 Bremner J D, Vythilingam M, Vermetten E. et al . Reduced volume of orbitofrontal cortex in major depression.  Biol Psychiatry. 2002;  51 273-279
  • 20 Galynker I I, Cai J, Ongseng F, Finestone H, Dutta E, Serseni D. Hypofrontality and negative symptoms in major depressive disorder.  J Nucl Med. 1998;  39 608-612
  • 21 Bench C J, Frackowiak R S, Dolan R J. Changes in regional cerebral blood flow on recovery from depression.  Psychol Med. 1995;  25 247-261
  • 22 Blumberg H P, Stern E, Ricketts S. et al . Rostral and orbital prefrontal cortex dysfunction in the manic state of bipolar disorder.  Am J Psychiatry. 1999;  156 1986-1988
  • 23 Drevets W C. Prefrontal cortical-amygdalar metabolism in major depression.  Ann N Y Acad Sci. 1999;  877 614-637
  • 24 Matsuo K, Onodera Y, Hamamoto T, Muraki K, Kato N, Kato T. Hypofrontality and microvascular dysregulation in remitted late-onset depression assessed by functional near-infrared spectroscopy.  Neuroimage. 2005;  26 234-242
  • 25 Blumberg H P, Leung H C, Skudlarski P. et al . A functional magnetic resonance imaging study of bipolar disorder: state- and trait-related dysfunction in ventral prefrontal cortices.  Arch Gen Psychiatry. 2003;  60 601-609
  • 26 Elliott R, Rubinsztein J S, Sahakian B J, Dolan R J. The neural basis of mood-congruent processing biases in depression.  Arch Gen Psychiatry. 2002;  59 597-604
  • 27 Elliott R, Ogilvie A, Rubinsztein J S, Calderon G, Dolan R J, Sahakian B J. Abnormal ventral frontal response during performance of an affective go/no go task in patients with mania.  Biol Psychiatry. 2004;  55 1163-1170
  • 28 Gruber O, Gruber E, Falkai P. Neuronale Korrelate gestörter Arbeitsgedächtnisfunktionen bei schizophrenen Patienten. Ansätze zur Etablierung neurokognitiver Endophänotypen psychiatrischer Erkrankungen.  Radiologe. 2005;  45 153-160
  • 29 Pujol J, Soriano-Mas C, Alonso P. et al . Mapping structural brain alterations in obsessive-compulsive disorder.  Arch Gen Psychiatry. 2004;  61 720-730
  • 30 Szeszko P R, Robinson D, Alvir J M. et al . Orbital frontal and amygdala volume reductions in obsessive-compulsive disorder.  Arch Gen Psychiatry. 1999;  56 913-919
  • 31 Riffkin J, Yucel M, Maruff P. et al . A manual and automated MRI study of anterior cingulate and orbito-frontal cortices, and caudate nucleus in obsessive-compulsive disorder. Comparison with healthy controls and patients with schizophrenia.  Psychiatry Res. 2005;  138 99-113
  • 32 Saxena S, Brody A L, Maidment K M. et al . Cerebral glucose metabolism in obsessive-compulsive hoarding.  Am J Psychiatry. 2004;  161 1038-1048
  • 33 Mataix-Cols D, Wooderson S, Lawrence N, Brammer M J, Speckens A, Phillips M L. Distinct neural correlates of washing, checking, and hoarding symptom dimensions in obsessive-compulsive disorder.  Arch Gen Psychiatry. 2004;  61 564-576
  • 34 Whiteside S P, Port J D, Abramowitz J S. A meta-analysis of functional neuroimaging in obsessive-compulsive disorder.  Psychiatry Res. 2004;  132 69-79
  • 35 Breiter H C, Rauch S L, Kwong K K. et al . Functional magnetic resonance imaging of symptom provocation in obsessive-compulsive disorder.  Arch Gen Psychiatry. 1996;  53 595-606
  • 36 Chen X L, Xie J X, Han H B, Cui Y H, Zhang B Q. MR perfusion-weighted imaging and quantitative analysis of cerebral hemodynamics with symptom provocation in unmedicated patients with obsessive-compulsive disorder.  Neurosci Lett. 2004;  370 206-211
  • 37 Glahn D C, Ragland J D, Abramoff A, Barrett J, Laird A R, Bearden C E, Velligan D. Beyond hypofrontality: a quantitative meta-analysis of functional neuroimaging studies of working memory in schizophrenia.  Hum Brain Mapp. 2005;  25 60-69
  • 38 Davidson L L, Heinrichs R W. Quantification of frontal and temporal lobe brain-imaging findings in schizophrenia: a meta-analysis.  Psychiatry Res. 2003;  122 69-87
  • 39 Davatzikos C, Shen D, Gur R. et al . Whole-brain morphometric study of schizophrenia revealing a spatially complex set of focal abnormalities.  Arch Gen Psychiatry. 2005;  62 218-1227
  • 40 Cotter D, Hudson L, Landau S. Evidence for orbitofrontal pathology in bipolar disorder and major depression, but not in schizophrenia.  Bipolar Disord. 2005;  7 58-369
  • 41 Wible C G, Anderson J, Shenton M E. et al . Prefrontal cortex, negative symptoms, and schizophrenia: an MRI study.  Psychiatry Res. 2001;  108 65-78
  • 42 Weinberger D R, Berman K F, Zec R F. Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia. I. Regional cerebral blood flow evidence.  Arch Gen Psychiatry. 1986;  43 114-124
  • 43 Ebmeier K P, Lawrie S M, Blackwood D H, Johnstone E C, Goodwin G M. Hypofrontality revisited: a high resolution single photon emission computed tomography study in schizophrenia.  J Neurol Neurosurg Psychiatry. 1995;  58 452-456
  • 44 Malaspina D, Harkavy-Friedman J, Corcoran C. et al . Resting neural activity distinguishes subgroups of schizophrenia patients.  Biol Psychiatry. 2004;  56 931-937
  • 45 Eyler L T, Olsen R K, Jeste D V, Brown G G. Abnormal brain response of chronic schizophrenia patients despite normal performance during a visual vigilance task.  Psychiatry Res. 2004;  130 245-257
  • 46 Thermenos H W, Goldstein J M, Buka S L. et al . The effect of working memory performance on functional MRI in schizophrenia.  Schizophr Res. 2005;  74 179-194
  • 47 Goldman-Rakic P S. Working memory dysfunction in schizophrenia.  J Neuropsychiatry Clin Neurosci. 1994;  6 348-357
  • 48 Fahim C, Stip E, Mancini-Marie A. et al . Brain activity during emotionally negative pictures in schizophrenia with an without flat affect: an fMRI study.  Psychiatry Res. 2005;  140 1-15
  • 49 Manoach D S. Prefrontal cortex dysfunction during working memory performance in schizophrenia: reconciling discrepant findings.  Schizophr Res. 2003;  60 285-298
  • 50 Gruber O, Falkai P. Neurobiologie der gestörten zerebralen Konnektivität bei schizophrenen Psychosen.  Med Report. 2003;  41 8-11

Prof. Dr. Oliver Gruber

Klinik für Psychiatrie und Psychotherapie, Georg-August-Universität

Von-Siebold-Str. 5

37075 Göttingen

Email: ogruber@gwdg.de

    >