Klinische Neurophysiologie 2007; 38(2): 136-140
DOI: 10.1055/s-2007-977730
Originalia

© Georg Thieme Verlag KG Stuttgart · New York

Methode und Mechanismen der transkraniellen Gleichstromstimulation

Methods and Mechanisms of Transcranial Direct Current StimulationD. Liebetanz 1 , W. Paulus 1 , M. A. Nitsche 1
  • 1Abteilung Klinische Neurophyisologie, Georg-August-Universität, Göttingen
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
23. Juli 2007 (online)

Zusammenfassung

Schwacher Gleichstrom induziert neuroplastische Veränderungen der Erregbarkeit des Kortex von Tier und Mensch. Die Erregbarkeitsveränderungen sind abhängig von der Polarität und der Dauer der Gleichstromstimulation sowie von der verwendeten Stromstärke. Die ursprünglich auf tierexperimentelle Untersuchungen aus den 50er und 60er Jahren zurückgehende Technik, konnte in jüngeren Studien erfolgreich auf die Anwendung am humanen Kortex übertragen werden. Hierbei führt kathodale transkranielle Gleichstromstimulation (tDCS) zu einer Verminderung und anodale Stimulation zu einer Erhöhung der mittels transkranieller Magnetstimulation (TMS) gemessenen kortikalen Erregbarkeit. Abhängig von der Stimulationsdauer können die Effekte jeweils bis zu einer Stunde nach Ende der Stimulation anhalten. Pharmakologische Humanstudien, die tDCS jeweils mit einer Prämedikation des Natriumkanal-Blockers Carbamazepin und des NMDA-Rezeptor-Antagonisten Dextromethorphan kombinierten, legen nahe, dass die Effekte auf eine polaritätsspezifische Verschiebung der Ruhemembranpotenzials zurückgehen, die dann zu einer NMDA-Rezeptor-vermittelten Transformation der synaptischen Stärke führt. Die Mechanismen der tDCS weisen somit eine gewisse Nähe zu bekannten neuroplastischen Phänomenen wie LTP und LTD auf. Hinsichtlich des therapeutischen Potenzials der tDCS konnten bisherige Pilotstudien positive Effekte der anodalen tDCS bei Patienten mit chronischem Schmerzsyndrom, Schlaganfall oder Depression nachweisen. Darüber hinaus begründen sowohl tierexperimentelle Daten als auch eine klinische Pilotstudie die Annahme, dass kathodale tDCS eine mögliche therapeutische Option bei pharmakoresistenten fokalen Epilepsien darstellt, insbesondere bei solchen mit oberflächennahen Foci, wie sie beispielsweise bei der Epilepsia partials continua oder bei kortikalen Dysplasien auftreten. Bevor die Ergebnisse zur therapeutischen Wirkung der jüngsten Pilotstudien zu einem breiteren klinischen Einsatz der tDCS bei Patienten mit Epilepsie, Schlaganfall oder Depression führen, sollten Untersuchungen zur Optimierung der Effektivität und Stabilität der erzeugten neuroplastischen Effekte z. B. durch Intensivierung der tDCS-Protokolle durchgeführt werden.

Abstract

Weak direct current stimulation induces neuroplastic changes of cortical excitability in animals and humans. The effects depend on polarity and duration of the direct current stimulation as well as on the applied current strength. Originally based on animal experiments of the 1950s and 1960s, the technique of transcranial direct current stimulation (tDCS) has recently been successfully transferred to the human motor cortex. Here, cathodal tDCS results in a decreased cortical excitability whereas the anodal form leads to an enhancement of TMS-assessed cortical excitability. Depending on the stimulation duration, after-effects can be achieved that last up to one hour. Pharmacological studies, which combined tDCS with a premedication of the Na channel-blocking carbamazepine and the NMDA receptor antagonist dextromethorphan, demonstrate that the after-effects of tDCS involve polarity-specific shifts of membrane potentials and a consecutive NMDA receptor-mediated transformation of synaptic strength. Therefore, the mechanisms of tDCS after-effects share similarities with those of the well-known neuroplastic effects of LTP and LTD. With respect to the therapeutic potential of tDCS, pilot studies suggest positive effects of anodal tDCS in patients with chronic pain, chronic stroke and major depression. For cathodal tDCS, recent animal and clinical studies demonstrated antiepileptic properties, supporting the hypothesis that cathodal tDCS might serve as a therapeutic option in drug-refractory focal epilepsy, particular in cases with superficial foci as in patients with epilepsia partialis continua or cortical dysplasia. Before these piloting results of beneficial tDCS effects can be transformed into a broader therapeutic application of tDCS in patients with epilepsy, chronic stroke or major depression, further research should optimize the power and stability of the induced neuroplastic effects.

Literatur

  • 1 Liepert J, Miltner WH, Bauder H, Sommer M, Dettmers C, Taub E, Weiller C. Motor cortex plasticity during constraint-induced movement therapy in stroke patients.  Neurosci Lett. 1998;  250 5-8
  • 2 Sadato N, Pascual-Leone A, Grafman J, Ibanez V, Deiber MP, Dold G, Hallett M. Activation of the primary visual cortex by Braille reading in blind subjects.  Nature. 1996;  380 526-528
  • 3 Cohen LG, Celnik P, Pascual-Leone A, Corwell B, Falz L, Dambrosia J, Honda M, Sadato N, Gerloff C, Catala MD, Hallett M. Functional relevance of cross-modal plasticity in blind humans.  Nature. 1997;  389 180-183
  • 4 Pascual-Leone A, Valls-Sole J, Wassermann EM, Hallett M. Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex.  Brain. 1994;  117 847-858
  • 5 Ziemann U. TMS induced plasticity in human cortex.  Rev Neurosci. 2004;  15 253-266
  • 6 Bishop GH, O'Leary JL. The effects of polarizing currents on cell potentials and their significance in the interpretation of central nervous system activity.  EEG Clin. Neurophysiol. 1950;  2 401-416
  • 7 Terzuolo CA, Bullock TH. Measurement of imposed voltage gradient adequate to modulate neuronal firing.  Proceedings of the National Academy of Sciences of the USA. 1956;  42 687-694
  • 8 Bindman LJ, Lippold OCJ, Redfearn JWT. Long-lasting changes in the level of the electrical activity of the cerebral cortex activity produced by polarizing currents.  Nature. 1962;  196 584-585
  • 9 Bindman LJ, Lippold OCJ, Redfearn JWT. The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long-lasting after-effects.  J Physiol. 1964;  172 369-382
  • 10 Creutzfeldt OD, Fromm GH, Kapp H. Influence of transcortical dc-currents on cortical neuronal activity.  Experimental Neurology. 1962;  5 436-452
  • 11 Eccles JC, Kostyuk PG, Schmitd RF. The effect of electric polarisation of the spinal cord on central afferent fibres and on their excitatory synaptic aciton.  J Physiology. 1962;  162 138-150
  • 12 Landau WM, Bishop GH, Clare MH. Analysis of the form and distribution of evoked cortical potentials under the influence of polarizing currents.  J Neurophysiology. 1963;  27 788-813
  • 13 Purpura DP, McMurtry JG. Intracelluar activities and evoked potential changes during polarization of motor cortex.  J Neurophysiology. 1965;  28 166-185
  • 14 Gorman AL. Differential patterns of activation of the pyramidal system elicited by surface anodal and cathodal cortical stimulation.  J Neurophysiol. 1966;  29 547-564
  • 15 Gartside IB. Mechanisms of sustained increases of firing rate of neurones in the rat cerebral cortex after polarization: role of protein synthesis.  Nature. 1968;  220 383-384
  • 16 Gartside IB. Mechanisms of sustained increases of firing rate of neurons in the rat cerebral cortex after polarization: reverberating circuits or modification of synaptic conductance?.  Nature. 1968;  220 382-383
  • 17 Lippold OCJ, Redfearn JWT. Mental Changes Resulting from the Passage of Small Direct Currents Through the Human Brain.  Brit J Psychiat. 1964;  110 768-772
  • 18 Redfearn JWT, Lippold OCJ. A Preliminary Account of the Clinical Effects of Polarising the Brain in Certain Psychiatric Disorders.  Brit J Psychiat. 1964;  110 773-785
  • 19 Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation.  J Physiol. 2000;  527 633-639
  • 20 Nitsche MA, Paulus W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans.  Neurology. 2001;  57 1899-1901
  • 21 Nitsche MA, Nitsche MS, Klein CC, Tergau F, Rothwell JC, Paulus W. Level of action of cathodal DC polarisation induced inhibition of the human motor cortex.  Clin Neurophysiol. 2003a;  114 600-604
  • 22 Hummel F, Celnik P, Giraux P, Floel A, Wu WH, Gerloff C, Cohen LG. Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke.  Brain. 2005;  128 490-499
  • 23 Fregni F, Boggio PS, Mansur CG, Wagner T, Ferreira MJ, Lima MC, Rigonatti SP, Marcolin MA, Freedman SD, Nitsche MA, Pascual-Leone A. Transcranial direct current stimulation of the unaffected hemisphere in stroke patients.  Neuroreport. 2005;  16 1551-1555
  • 24 Fregni F, Boggio PS, Lima MC, Ferreira MJ, Wagner T, Rigonatti SP, Castro AW, Souza DR, Riberto M, Freedman SD, Nitsche MA, Pascual-Leone A. A sham-controlled, phase II trial of transcranial direct current stimulation for the treatment of central pain in traumatic spinal cord injury.  Pain. 2006;  122 197-209
  • 25 Fregni F, Thome-Souza S, Nitsche MA, Freedman SD, Valente KD, Pascual-Leone A. A controlled clinical trial of cathodal DC polarization in patients with refractory epilepsy.  Epilepsia. 2006b;  47 335-342
  • 26 Liebetanz D, Klinker F, Hering D, Koch R, Nitsche MA, Potschka H, Löscher W, Paulus W, Tergau F. Anticonvulsant effects of transcranial direct current stimulation (tDCS) in the rat cortical ramp model of focal epilepsy.  Epilepsia. 2006;  7 1216-1224
  • 27 Fregni F, Boggio PS, Nitsche MA, Marcolin MA, Rigonatti SP, Pascual-Leone A. Treatment of major depression with transcranial direct current stimulation.  Bipolar Disord. 2006c;  8 203-204
  • 28 Iyer MB, Mattu U, Grafman J, Lomarev M, Sato S, Wassermann EM. Safety and cognitive effect of frontal DC brain polarization in healthy individuals.  Neurology. 2005;  64 872-875
  • 29 Nitsche MA, Liebetanz D, Lang N, Antal A, Tergau F, Paulus W. Safety criteria for transcranial direct current stimulation (tDCS) in humans.  Clin Neurophysiol. 2003c;  114 2220-2222 , author reply 2222-2223
  • 30 Miranda PC, Lomarev M, Hallett M. Modeling the current distribution during transcranial direct current stimulation.  Clin Neurophysiol. 2006;  117 1623-1629
  • 31 Gandiga PC, Hummel FC, Cohen LG. Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation.  Clin Neurophysiol. 2006;  117 845-850
  • 32 Liebetanz D, Nitsche MA, Tergau F, Paulus W. Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability.  Brain. 2002;  125 2238-2247
  • 33 Nitsche MA, Fricke K, Henschke U, Schlitterlau A, Liebetanz D, Lang N, Henning S, Tergau F, Paulus W. Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans.  J Physiol. 2003b;  553 293-301
  • 34 McLean MJ, Macdonald RL. Carbamazepine and 10,11-epoxycarbamazepine produce use- and voltage-dependent limitation of rapidly firing action potentials of mouse central neurons in cell culture.  J Pharmacol Exp Ther. 1986;  238 727-738
  • 35 MacDonald JF, Wojtowicz JM. The effects of L-glutamate and its analogues upon the membrane conductance of central murine neurones in culture.  Can J Physiol Pharmacol. 1982;  60 282-296
  • 36 Schwarz JR, Grigat G. Phenytoin and carbamazepine: potential- and frequency-dependent block of Na currents in mammalian myelinated nerve fibers.  Epilepsia. 1989;  30 286-294
  • 37 Franklin PH, Murray TF. High affinity [3H]dextrorphan binding in rat brain is localized to a noncompetitive antagonist site of the activated N-methyl-D-aspartate receptor-cation channel.  Mol Pharmacol. 1992;  41 134-146
  • 38 Tortella FC, Pellicano M, Bowery NG. Dextromethorphan and neuromodulation: old drug coughs up new activities [see comments].  Trends Pharmacol Sci. 1989;  10 501-507
  • 39 Wong BY, Coulter DA, Choi DW, Prince DA. Dextrorphan and dextromethorphan, common antitussives, are antiepileptic and antagonize N-methyl-D-aspartate in brain slices.  Neurosci Lett. 1988;  85 261-266
  • 40 D'Angelo E, Rossi P. Integrated regulation of signal coding and plasticity by NMDA receptors at a central synapse.  Neural Plast. 1998;  6 8-16
  • 41 Malenka RC. Postsynaptic factors control the duration of synaptic enhancement in area CA1 of the hippocampus.  Neuron. 1991;  6 53-60
  • 42 Malenka RC, Nicoll RA. Long-term potentiation - a decade of progress?.  Science. 1999;  285 1870-1874
  • 43 Artola A, Brocher S, Singer W. Different voltage-dependent thresholds for inducing long-term depression and long-term potentiation in slices of rat visual cortex [see comments].  Nature. 1990;  347 69-72
  • 44 Durand DM, Bikson M. Suppression and control of epileptiform activity by electrical stimulation: a review.  Proc. IEEE. 2001;  89 065-1082
  • 45 Bikson M, Inoue M, Akiyama H, Deans JK, Fox JE, Miyakawa H, Jefferys JG. Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro.  J Physiol. 2004;  557 175-190
  • 46 Costain R, Redfearn JWT, Lippold OCJ. A controlled trial of the therapeutic effects of polarization of the brain in depressive illness.  British Journal of Psychiatry. 1964;  110 786-799
  • 47 Fregni F, Marcondes R, Boggio PS, Marcolin MA, Rigonatti SP, Sanchez TG, Nitsche MA, Pascual-Leone A. Transient tinnitus suppression induced by repetitive transcranial magnetic stimulation and transcranial direct current stimulation.  Eur J Neurol. 2006d;  13 996-1001
  • 48 Liebetanz D, Fregni F, Monte-Silva KK, Oliveira MB, Amancio-dos-Santos A, Nitsche MA, Guedes RC. After-effects of transcranial direct current stimulation (tDCS) on cortical spreading depression.  Neurosci Lett. 2006;  398 85-90
  • 49 Voskuyl RA, Dingemanse J, Danhof M. Determination of the threshold for convulsions by direct cortical stimulation.  Epilepsy Res. 1989;  3 120-129

Korrespondenzadresse

D. Liebetanz

Abteilung Klinische Neurophyisologie

Georg-August-Universität

Robert-Koch-Str. 40

37075 Göttingen

eMail: dliebet@gwdg.de

    >