Klinische Neurophysiologie 2007; 38(2): 112-116
DOI: 10.1055/s-2007-977727
Originalia

© Georg Thieme Verlag KG Stuttgart · New York

Moderne neurophysiologische Methoden in der Neuropathiediagnostik

Modern Neurophysiological Methods in the Diagnostics of NeuropathiesI. Galazky 1 , F. Awiszus 2 , H. Feistner 1
  • 1Klinik für Neurologie II der Otto-von-Guericke-Universität Magdeburg
  • 2Orthopädische Universitätsklinik der Otto-von-Guericke-Universität Magdeburg
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
23. Juli 2007 (online)

Zusammenfassung

Elektrophysiologische Untersuchungen wie die Messung der Nervenleitgeschwindigkeit und die quantitative EMG-Analyse sind etablierte Verfahren im neurophysiologischen Labor. Sie dienen dem Erkrankungsnachweis der peripheren Nerven. Pathophysiologische Veränderungen am Nerven selbst, die zu einer Funktionsstörung führen können, werden jedoch nicht erfasst. Häufig sind auch die gemessenen neurophysiologsichen Parameter nicht sensitiv genug, eine Störung im frühen Erkrankungsstadium nachzuweisen oder beim Vorliegen von Positivsymptomen wie Parästhesien oder Faszikulationen. Die Motor Unit Number Estimation (MUNE) ist eine neurophysiologische Untersuchungstechnik, die eine Schätzung der Anzahl motorischer Einheiten und somit der funktionierenden Axone, welche einen bestimmten Muskel versorgen und der Größe individueller motorischer Einheiten ermöglicht. „Latent addition“ ist ein Parameter der veränderten Erregbarkeit an der Membran eines ruhenden Nerven. Diese modernen elektrophysiologischen Techniken weisen auch bei geringer klinischer Symptomatik Veränderungnen auf. Darüber hinaus vermitteln sie dem Untersucher Informationen über Degenerationsprozesse und Reinnervation bei peripheren Neuropathien unabhängig voneinander.

Abstract

Electrophysiological methods for the measurement of nerve conduction velocity and the quantitative analysis of the electromyogram are well established in the neurophysiological laboratory. These methods are helpful for identifying functional nerve disorders, however there are several limitations: 1) Pathophysiological changes within the nerve itself, which may lead to an abnormal function, cannot be detected. 2) The measured neurophysiological parameters are often not sensitive enough to detect disorder either in an early stage of disease or when patients suffer from positive symptoms like paresthesia or fasciculation's. Motor unit number estimation (MUNE) is a neurophysiological technique that provides information on the number and the size of individual motor units of a muscle and the number of axons innervating a muscle. Latent addition is one measure of membrane excitability changes of the resting nerve. These newer electrophysiological methods are sensitive at an early stage of disease and enable the examiner to separate axonal degeneration from collateral rerouting in peripheral nerve disorder.

Literatur

  • 1 McComas AJ, Fawcett P, Campbell M, Sica R. Electrophysiological estimation of the number of motor units within a human muscle.  J Neurol Neurosurg Psychiatry. 1971;  34 121-131
  • 2 McComas A. Invited review: motor unit estimation: methods, results, and present status.  Muscle Nerve. 1991;  14 585-597
  • 3 Brown W, Milner-Brown H. Some electrical properties of motor units and their effects on the methods of estimating motor unit numbers.  J Neurol Neurosurg Psychiatry. 1976;  39 249-257
  • 4 Galea V, DeBruin H, Cavasin R, McComas A. The numbers and relative sizes of motor units estimated by computer.  Muscle Nerve. 1991;  14 1123-1130
  • 5 Kadrie H, Yater S, Milner-Brown H, Brown W. Multiple point electrical stimulation of ulnar and median nerves.  J Neurol Neurosurg Psychiatry. 1976;  39 973-985
  • 6 Doherty T, Brown W. The estimated numbers and relative sizes of the thenar units as selected by multiple point stimulation in young and older adults.  Muscle Nerve. 1993;  16 355-366
  • 7 Daube J. Estimating the number of motor units in a muscle.  Clin Neurophysiol. 1995;  12 585-594
  • 8 Lomen-Hoerth C, Slawnych M. Statistical motor unit number estimation: From theory to practise.  Muscle Nerve. 2003;  28 263-272
  • 9 Shefner J, Jillapalli D, Bradshaw D. Reducing intersubject variability in motor unit number estimation.  Muscle Nerve. 1999;  22 1457-1460
  • 10 Lomen-Hoerth C, Olney R. Effects of recording window and stimulation variables on the statistical technique of motor unit number estimation.  Muscle Nerve. 2001;  24 1659-1664
  • 11 Olney R, Yuen E, Engstrum J. Statistical motor unit number estimation: Reproducibility and sources of error in patients with amyotrophic lateral sclerosis.  Muscle Nerve. 2000;  23 193-197
  • 12 Bromberg M. Consensus. In: Bromberg M (Hrsg): Motor Unit Number Estimation. Amsterdam: Elsevier 2003: 335-338
  • 13 Brown W, Strong M, Snow R. Methods for estimating numbers of motor units in biceps-brachialis muscles and losses of motor units with aging.  Muscle Nerve. 1988;  11 423-431
  • 14 Bromberg M, Abrams J. Sources of error in the spike-triggered averaging method of motor unit number estimation.  Muscle Nerve. 1995;  18 1139-1146
  • 15 Stein R, Yang J. Methods for estimating the number of motor units in human muscles.  Ann Neurol. 1990;  28 487-495
  • 16 Stashuk D. Decomposition and quantitative analysis of clinical electromyographic signals.  Med Engin Phys. 1999;  21 389-404
  • 17 Doherty T, Stashuk D. Decomposition-based quantitative electromyography: Methods and initial normative datain five muscles.  Muscle Nerve. 2003;  16 1326-1331
  • 18 Lawson VMB, Stashuk D. Comparison of conventional and decomposition-enhanced spike-triggered averaging techniques.  J Clin Neurophysiol. 2004;  115 564-568
  • 19 Shefner J, Cudkowicz JM, Zhang H, Schoenfeld D, Jillapalli D. Revised statistical motor unit number estimation in Celecoxib/ALS trial.  Muscle Nerve. 2007;  35 228-234
  • 20 Burke D, Mogyoros I, Vagg R, Kiernan MC. Quantitative description of the voltage dependence of axonal excitability in human cutaneous afferents.  Brain. 1998;  121 1975-1983
  • 21 Kiernan MC, Cikurel K, Bostock H. Effects of temperature on the excatibility properties of human motor axons.  Brain. 2001;  124 816-825
  • 22 Weiss G. Sur la possibilite de rendre comparables entre cux les appareils servant a L`excitation electrique.  Arch Ital Biol. 1901;  35 413-446
  • 23 Crill WE. Persistent sodium current in mammalian central neurons.  Annu Rev Physiol. 1996;  58 349-362
  • 24 Baker MD, Bostock H. Low-threshold, persistent sodium current in rat large dorsal ganglion neurons in culture.  J Neurophysiol. 1997;  77 1503-1513
  • 25 Bostock H, Rothwell JC. Latent addition in motor and sensory fibres of human peripheral nerve.  J Physiol (Lond). 1997;  498 277-294
  • 26 Kuwabara S, Misawa S, Tamura N, Nakata M, Kanai K, Sawai S. et al . Latent addition in human motor and sensory axons: different site-dependent changes across the carpal tunnel related to persistent Na+ currents.  Clin Neurophysiol. 2006;  117 810-814
  • 27 Misawa S, Kuwabara S, Kanai K, Tamura N, Nakata M, Ogawara K. et al . Nodal persitent Na+ currents in human diabetic nerves estimated by the technique of latent addition.  Clin Neurophysiol. 2006;  117 815-820
  • 28 Tamura N, Kuwabara S, Misawa S, Kanai K, Nakata M, Sawai S. et al . Increased nodal persistent Na+ currents in human neuropathy in motor neuron disease estimated by latent addition.  Clin Neurophysiol. 2006;  117 2451-2458

Korrespondenzadresse

Dr. med. I. Galazky

Klinik für Neurologie II

Otto- von-Guericke-Universität

Magdeburg

Leipziger Str. 44

39120 Magdeburg

eMail: Imke.Galazky@med.ovgu.de

    >