The aim of this experiment was to investigate the effects of differing pedalling speeds
on the power-duration relationship during high intensity cycle ergometry with pedal
cadences of 50 (low), 90 (intermediate) and 110 (high) r · min-1. This hiyperbolic power-duration relationship can be described as: (P - ØPA) · t = W, where P = power output, t = time to exhaustion, and ØPA and W' are constants. Eight volunteer male subjects, aged 24 + 2.6 yr, with no competitive
cycling training took part in this study and each undertook thirteen tests on a Lode
BV Excalibur Spiort VI.52 cycle ergometer over an eight week period. The first exercise
bout was a 30 W · min-1 incremental cycle at 50 r · min-1 to volitional fatigue. This allowed the identification of a range of power outputs
that would be used to construct and examine the power-duration relationships for each
subject at 50, 90 and 110 r · min-1. At both 50 and 90 r · min-1, power outputs of 30 W above and below and 60 W above the highest work rate, as well
as. the maximum work rate achieved during the incremental exercise test were chosen,
while at 110 r · min-1, the power outputs chosen were 25 W above and below as well as 50 W above the highest
work rate achieved during the incremental exercise test and also the maximum work
rate achieved during the incremental exercise test were chosen. These four work rates
for each pedalling frequency were chosen because they would have exercise times to
exhaustion in the range of 1 - 10 minutes. Each exercise bout was preceded by four
minutes of unloaded cycling and then the work rate was adjusted quickly to the desired
load settling by the previously programmed computerised ergometer. The results of
this work indicate that for the group of subjects studied, pedalling a cycle ergometer
at 50 r · min-1 allows subjects to pedal for a significantly greater time than when pedalling at
either 90 or 110 r · min-1. ØPA at 50 r · min-1 was significantly greater than when pedalling at either 90 (F(1,21) = 7.47, p < 0.01)
or 110 r · min-1 (F1(121) = 10.83, p < 0.0005). There was no significant (p > 0.22) difference between
ØPA at 90 and 110 r · min-1, F(1,21) · 1.36. W however, was not significantly different when the data for 50
r · min-1, 90 r · min-1 and 110 r · min-1 were compared (F50 = 0.95; p >0.41; F90 r · min-1 (1.21) = 0.79, p >0.53; F110 r · min-1 (1,21) = 0.78, p > 0.53). Our hypothesis, that endurance performance was reduced
when recreational cyclists pedal at a high cadence when compared to a low cadence
was correct. Maximum sustainable power output during cycle ergometry was higher at
50 r · min-1 than at either 90 or 110 r · min-1. At the intermediate cadence endurance
was better than at the high but worse than at the low cadence. In conclusion, during
endurance cycling, recreaional cyclists should pedal at lower rather than higher cadences.
Key words
Pedal cadence - endurance - fatigue - power - exertion