Exp Clin Endocrinol Diabetes 2007; 115(4): 221-228
DOI: 10.1055/s-2007-970574
Article

© J. A. Barth Verlag in Georg Thieme Verlag KG · Stuttgart · New York

Glutamate Cysteine Ligase Catalytic Subunit Promoter Polymorphisms and Associations with Type 1 Diabetes Age-at-onset and GAD65 Autoantibody Levels

L. M. Bekris 1 , 2 , C. Shephard 2 , 4 , M. Janer 5 , J. Graham 3 , B. McNeney 3 , J. Shin 3 , M. Zarghami 1 , W. Griffith 2 , F. Farin 2 , 4 , T. J. Kavanagh 2 , 4 , A. Lernmark 1
  • 1Department of Medicine, University of Washington, Seattle, WA
  • 2Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA
  • 3Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, B.C., Canada
  • 4UW/NIEHS Center for Ecogenetics and Environmental Health, University of Washington, Seattle, WA
  • 5Institute for Systems Biology, Seattle, WA
Further Information

Publication History

received 4. 11. 2006 first decision 6. 11. 2006

accepted 6. 11. 2006

Publication Date:
03 May 2007 (online)

Abstract

The purpose of this study was to test the hypothesis that glutamate cysteine ligase catalytic subunit (GCLC) promoter polymorphisms are susceptibility factors for type 1 diabetes (T1D), T1D age-at-onset and T1D autoantibodies. T1D patients and control subjects from the Swedish Childhood Diabetes Registry and the Swedish Diabetes Incidence Study registry were genotyped for two GCLC promoter polymorphisms; the GCLC -129 C to T single nucleotide polymorphism (GCLC -129 SNP) and the GCLC GAG trinucleotide repeat polymorphism (GCLC TNR). Glutamate decarboxylase antibody (GAD65Ab) positive T1D patients with the GCLC -129 SNP C/T genotype have increased GAD65Ab levels (p-value, <0.05) compared to the GCLC -129 SNP C/C genotype. T1D patients with an age-at-onset of 14-35 years who possess the GCLC -129 SNP T/T genotype have a higher GAD65Ab index than T1D patients with the GCLC -129 SNP C/C genotype (p-value <0.05). In addition, T1D patients with an age-at-onset of 14-35 years possess the GCLC TNR 7/8 genotype at a lower frequency than the control subjects (OR, 0.33, 95% CI, 0.13-0.82). The GCLC -129 SNP and GCLC TNR appear to be in linkage disequilibrium (p-value<0.0001). These results suggest that GCLC promoter polymorphisms may influence GAD65Ab levels and may influence the age at which T1D is diagnosed.

References

  • 1 Atkinson MA, Eisenbarth GS. Type 1 diabetes: new perspectives on disease pathogenesis and treatment.  Lancet. 2001;  358 221-9
  • 2 Badenhoop K, Boehm BO. Genetic susceptibility and immunological synapse in type 1 diabetes and thyroid autoimmune disease.  Exp Clin Endocrinol Diabetes.. 2004;  112 407-415
  • 3 Bastar I, Seckin S, Uysal M, Aykac-Toker G. Effect of streptozotocin on glutathione and lipid peroxide levels in various tissues of rats.  Res Commun Mol Pathol Pharmacol. 1998;  102 265-272
  • 4 Bea F, Hudson FN, Chait A, Kavanagh TJ, Rosenfeld ME. Induction of glutathione synthesis in macrophages by oxidized low-density lipoproteins is mediated by consensus antioxidant response elements.  Circ Res. 2003;  92 386-393 , Epub 2003 Feb 6.
  • 5 Bekris LM, Viernes HM, Farin FM, Maier LA, Kavanagh TJ, Takaro TK. Chronic beryllium disease and glutathione biosynthesis genes.  J Occup Environ Med.. 2006;  48 599-606
  • 6 Bennett ST, Wilson AJ, Cucca F, Nerup J, Pociot F, McKinney PA, Barnett AH, Bain SC, Todd JA. IDDM2-VNTR-encoded susceptibility to type 1 diabetes: Dominant protection and parental transmission of allele of the insulin gene-linked minisatellite locus.  J. Autoimmunity. 1996;  9 415-421
  • 7 Beutler E, Gelbart T, Kondo T, Matsunaga AT. The molecular basis of a case of gamma-glutamylcysteine synthetase deficiency.  Blood. 1999;  94 2890-2894
  • 8 Blohmé G, Nyström L, Arnqvist HJ, Lithner F, Littorin B, Olsson PO, Scherstén B, Wibell L, Ostman J. Male predominance of Type 1 (insulin-dependent) diabetes mellitus in young adult: results from a 5-year prospective nationwide study of the 15-34 year age group in Sweden.  Diabetologia. 1992;  35 55-62
  • 9 Bonifacio E, Bingley PJ, Shattock M, Dean BM, Dunger D, Gale EAM, Bottazzo GF. Quantification of islet cell antibodies and prediction of insulin dependent diabetes.  Lancet. 1990;  335 147-149
  • 10 Bonifacio E, Lernmark A, Dawkins RL. Serum exchange and use of dilutions have improved precision of measurement of islet cell antibodies.  J Immunol Methods. 1988;  106 83-88
  • 11 Bottini N, Musumeci L, Alonso A, Rahmouni S, Nika K, Rostamkhani M, MacMurray J, Meloni GF, Lucarelli P, Pellecchia M, Eisenbarth GS, Comings D, Mustelin T. A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes.  Nat Genet.. 2004;  36 337-338 , Epub 2004 Mar 7.
  • 12 Bottino R, Balamurugan AN, Tse H, Thirunavukkarasu C, Ge X, Profozich J, Milton M, Ziegenfuss A, Trucco M, Piganelli JD. Response of human islets to isolation stress and the effect of antioxidant treatment.  Diabetes. 2004;  53 2559-2568
  • 13 Comhair SA, Lewis MJ, Bhathena PR, Hammel JP, Erzurum SC. Increased glutathione and glutathione peroxidase in lungs of individuals with chronic beryllium disease.  Am J Respir Crit Care Med.. 1999;  159 1824-1829
  • 14 Dickinson DA, Levonen AL, Moellering DR, Arnold EK, Zhang H, Darley-Usmar VM, Forman HJ. Human glutamate cysteine ligase gene regulation through the electrophile response element.  Free Radic Biol Med. 2004;  37 1152-1159
  • 15 Dominguez C, Ruiz E, Gussinye M, Carrascosa A. Oxidative stress at onset and in early stages of type 1 diabetes in children and adolescents.  Diabetes Care. 1998;  21 1736-1742
  • 16 Falorni A, Grubin CE, Takei I, Shimada A, Kasuga A, Maruyama T, Ozawa Y, Kasatani T, Saruta T, Li L, Lernmark Å. Radioimmunoassay detects the frequent occurrence of autoantibodies to the Mr 65,000 isoform of glutamic acid decarboxylase in Japanese insulin-dependent diabetes.  Autoimmunity. 1994;  19 113-125
  • 17 Gale EA, Gillespie KM. Diabetes and gender.  Diabetologia. 2001;  44 3-15
  • 18 Gianani R, Rabin DU, Verge CF, Yu L, Babu SR, Pietropaolo M, Eisenbarth GE. ICA512 autoantibody radioassay.  Diabetes. 1995;  44 1340-1344
  • 19 Graham J, Hagopian WA, Kockum I, Li LS, Sanjeevi CB, Lowe RM, Schaefer JB, Zarghami M, Day HL, Landin-Olsson M, Palmer JP, Janer-Villanueva M, Hood L, Sundkvist G, Lernmark A, Breslow N, Dahlquist G, Blohme G. Genetic effects on age-dependent onset and islet cell autoantibody markers in type 1 diabetes.  Diabetes. 2002;  51 1346-1355
  • 20 Greenbaum CJ, Sears KL, Kahn SE, Palmer JP. Relationship of beta-cell function and autoantibodies to progression and nonprogression of subclinical type 1 diabetes - Follow-up of the Seattle Family Study.  Diabetes. 1999;  48 170-175
  • 21 Griffith OW, Mulcahy RT. The enzymes of glutathione synthesis: gamma-glutamylcysteine synthetase.  Adv Enzymol Relat Areas Mol Biol. 1999;  73 209-267 , xii
  • 22 Grubin CE, Daniels T, Toivola B, Landin-Olsson M, Hagopian WA, Li L, Karlsen AE, Boel E, Michelsen B, Lernmark A. A novel radioligand binding assay to determine diagnostic accuracy of isoform-specific glutamic acid decarboxylase antibodies in childhood IDDM.  Diabetologia. 1994;  37 344-350
  • 23 Hamilton D, Wu JH, Alaoui-Jamali M, Batist G. A novel missense mutation in the gamma-glutamylcysteine synthetase catalytic subunit gene causes both decreased enzymatic activity and glutathione production.  Blood. 2003;  102 725-730 , Epub 2003 Mar 27
  • 24 Hegewald M, Schoenfeld S, McCulloch D, Greenbaum C, Klaff LJ, Palmer JP. Increased specificity and sensitivity of insulin antibody measurements in autoimmune thyroid disease and type I diabetes.  J Immunol Methods. 1992;  154 61-68
  • 25 Ho E, Bray TM. Antioxidants, NFkappaB activation, and diabetogenesis.  Proc Soc Exp Biol Med. 1999;  222 205-213
  • 26 Karvonen M, Viik-Kajander M, Moltchanova E, Libman I, LaPorte R, Tuomilehjto J. Incidence of childhood type 1 diabetes worldwide. Diabetes Mondiale (DiaMond) Project Group.  Diabetes Care. 2000;  23 1516-1526
  • 27 Kim SK, Woodcroft KJ, Khodadadeh SS, Novak RF. Insulin signaling regulates gamma-glutamylcysteine ligase catalytic subunit expression in primary cultured rat hepatocytes.  J Pharmacol Exp Ther. 2004;  311 99-108 , Epub 2004 May 28.
  • 28 Koide S, Kugiyama K, Sugiyama S, Nakamura S, Fukushima H, Honda O, Yoshimura M, Ogawa H. Association of polymorphism in glutamate-cysteine ligase catalytic subunit gene with coronary vasomotor dysfunction and myocardial infarction.  J Am Coll Cardiol. 2003;  41 539-545
  • 29 Kondo H, Mori S, Takino H, Kijima H, Yamasaki H, Ozaki M, Tetsuya I, Urata Y, Abe T, Sera Y, Yamakawa K, Kawasaki E, Yamaguchi Y, Kondo T, Eguchi K. Attenuation of expression of gamma-glutamylcysteine synthetase by ribozyme transfection enhance insulin secretion by pancreatic beta cell line, MIN6.  Biochem Biophys Res Commun. 2000;  278 236-240
  • 30 Kristiansen OP, Larsen ZM, Pociot F. CTLA-4 in autoimmune diseases-a general susceptibility gene to autoimmunity?.  Genes Immun. 2000;  1 170-184
  • 31 Krzywanski DM, Dickinson DA, Iles KE, Wigley AF, Franklin CC, Liu RM, Kavanagh TJ, Forman HJ. Variable regulation of glutamate cysteine ligase subunit proteins affects glutathione biosynthesis in response to oxidative stress.  Arch Biochem Biophys. 2004;  423 116-125
  • 32 LaGasse JM, Brantley MS, Leech NJ, Rowe RE, Monks S, Palmer JP, Nepom GT, McCulloch DK, Hagopian WA. Successful prospective prediction of type 1 diabetes in schoolchildren through multiple defined autoantibodies: an 8-year follow-up of the Washington State Diabetes Prediction Study.  Diabetes Care. 2002;  25 505-511
  • 33 Landin-Olsson M, Karlsson FA, Lernmark Å, Sundkvist G. Islet cell and thyrogastric antibodies in 633 consecutive 15-34 years old patients in the Diabetes Incidence Study in Sweden (DISS).  Diabetes. 1992a;  41 1022-1027
  • 34 Landin-Olsson M, Palmer JP, Lernmark AÅA, Blom L, Sundkvist G, Nyström L, Dahlquist G. Predictive value of islet cell and insulin autoantibodies for type 1 (insulin-dependent) diabetes mellitus in a population-based study of newly-diagnosed diabetic and matched control children.  Diabetologia. 1992b;  35 1068-1073
  • 35 Lowe RM, Graham J, Sund G, Kockum I, Landin-Olsson M, Schaefer JB, Torn C, Lernmark A, Dahlquist G. The length of the CTLA-4 microsatellite (AT)N-repeat affects the risk for type 1 diabetes.  Autoimmunity. 2000;  32 173-180
  • 36 Manna SK, Kuo MT, Aggarwal BB. Overexpression of gamma-glutamylcysteine synthetase suppresses tumor necrosis factor-induced apoptosis and activation of nuclear transcription factor-kappa B and activator protein-1.  Oncogene. 1999;  18 4371-4382
  • 37 Martin-Gallan P, Carrascosa A, Gussinye M, Dominguez C. Biomarkers of diabetes-associated oxidative stress and antioxidant status in young diabetic patients with or without subclinical complications.  Free Radic Biol Med. 2003;  34 1563-1574
  • 38 Mathis D, Vence L, Benoist C. beta-Cell death during progression to diabetes.  Nature. 2001;  414 792-798
  • 39 McKone EF, Shao J, Frangolias DD, Keener CL, Shephard CA, Farin FM, Tonelli MR, Pare PD, Sandford AJ, Aitken ML, Kavanagh TJ. Variants in the Glutamate-Cysteine-Ligase Gene are Associated with Cystic Fibrosis Lung Disease.  Am J Respir Crit Care Med. 2006;  11 11
  • 40 Morrice NA, Powis SJ. A role for the thiol-dependent reductase ERp57 in the assembly of MHC class I molecules.  Curr Biol. 1998;  8 713-716
  • 41 Mulcahy RT, Gipp JJ. Identification of a putative antioxidant response element in the 5′-flanking region of the human gamma-glutamylcysteine synthetase heavy subunit gene.  Biochem Biophys Res Commun. 1995;  209 227-233
  • 42 Notkins AL, Lernmark A. Autoimmune type 1 diabetes: resolved and unresolved issues.  J Clin Invest. 2001;  108 1247-1252
  • 43 Oda T, Sadakata N, Komatsu N, Muramatsu T. Specific efflux of glutathione from the basolateral membrane domain in polarized MDCK cells during ricin-induced apoptosis.  J Biochem (Tokyo). 1999;  126 715-721
  • 44 Pociot F, McDermott MF. Genetics of type 1 diabetes mellitus.  Genes Immun. 2002;  3 235-249
  • 45 Pugliese A, Miceli D. The insulin gene in diabetes.  Diabetes Metab Res Rev. 2002;  18 13-25
  • 46 Rabin DU, Pleasic SM, Palmer-Crocker R, Shapiro JA. Cloning and expression of IDDM-specific human autoantigens.  Diabetes. 1992;  41 183-186
  • 47 Rabinovitch A. Free radicals as mediators of pancreatic islet beta-cell injury in autoimmune diabetes.  J Lab Clin Med. 1992;  119 455-456
  • 48 Rasilainen S, Nieminen JM, Levonen AL, Otonkoski T, Lapatto R. Dose-dependent cysteine-mediated protection of insulin-producing cells from damage by hydrogen peroxide.  Biochem Pharmacol. 2002;  63 1297-1304
  • 49 Ristoff E, Augustson C, Geissler J, de Rijk T, Carlsson K, Luo JL, Andersson K, Weening RS, van Zwieten R, Larsson A, Roos D. A missense mutation in the heavy subunit of gamma-glutamylcysteine synthetase gene causes hemolytic anemia.  Blood. 2000;  95 2193-2196
  • 50 Rocic B, Vucic M, Knezevic-Cuca J, Radica A, Pavlic-Renar I, Profozic V, Metelko Z. Total plasma antioxidants in first-degree relatives of patients with insulin-dependent diabetes.  Exp Clin Endocrinol Diabetes. 1997;  105 213-217
  • 51 Sanjeevi CB, Höök P, Landin-Olsson M, Kockum I, Dahlquist G, Lybrand TP, Lernmark Å. DR4 subtypes and their molecular properties in a population base study of Swedish childhood diabetes.  Tissue Antigens. 1996;  47 275-283
  • 52 Seghrouchni I, Drai J, Bannier E, Riviere J, Calmard P, Garcia I, Orgiazzi J, Revol A. Oxidative stress parameters in type I, type II and insulin-treated type 2 diabetes mellitus; insulin treatment efficiency.  Clin Chim Acta. 2002;  321 89-96
  • 53 Short S, Merkel BJ, Caffrey R, McCoy KL. Defective antigen processing correlates with a low level of intracellular glutathione.  Eur J Immunol. 1996;  26 3015-3020
  • 54 Siitonen T, Alaruikka P, Mantymaa P, Savolainen ER, Kavanagh TJ, Krejsa CM, Franklin CC, Kinnula V, Koistinen P. Protection of acute myeloblastic leukemia cells against apoptotic cell death by high glutathione and gamma-glutamylcysteine synthetase levels during etoposide-induced oxidative stress.  Ann Oncol. 1999;  10 1361-1367
  • 55 Telci A, Cakatay U, Salman S, Satman I, Sivas A. Oxidative protein damage in early stage Type 1 diabetic patients.  Diabetes Res Clin Pract. 2000;  50 213-223
  • 56 Tiedge M, Lortz S, Munday R, Lenzen S. Complementary action of antioxidant enzymes in the protection of bioengineered insulin-producing RINm5F cells against the toxicity of reactive oxygen species.  Diabetes. 1998;  47 1578-1585
  • 57 Tiedge M, Lortz S, Munday R, Lenzen S. Protection against the co-operative toxicity of nitric oxide and oxygen free radicals by overexpression of antioxidant enzymes in bioengineered insulin-producing RINm5F cells.  Diabetologia. 1999;  42 849-855
  • 58 Tran PO, Parker SM, LeRoy E, Franklin CC, Kavanagh TJ, Zhang T, Zhou H, Vliet P, Oseid E, Harmon JS, Robertson RP.. Adenoviral overexpression of the glutamylcysteine ligase catalytic subunit protects pancreatic islets against oxidative stress.  J Biol Chem. 2004;  279 53988-53993 , Epub 2004 Oct 12.
  • 59 Tsuchiya K, Mulcahy RT, Reid LL, Disteche CM, Kavanagh TJ. Mapping of the glutamate-cysteine ligase catalytic subunit gene (GLCLC) to human chromosome 6p12 and mouse chromosome 9D-E and of the regulatory subunit gene (GLCLR) to human chromosome 1p21-p22 and mouse chromosome 3H1-3.  Genomics. 1995;  30 630-632
  • 60 van den Dobbelsteen DJ, Nobel CS, Schlegel J, Cotgreave IA, Orrenius S, Slater AF. Rapid and specific efflux of reduced glutathione during apoptosis induced by anti-Fas/APO-1 antibody.  J Biol Chem. 1996;  271 15420-15427
  • 61 Varvarovska J, Racek J, Stozicky F, Soucek J, Trefil L, Pomahacova R. Parameters of oxidative stress in children with Type 1 diabetes mellitus and their relatives.  J Diabetes Complications. 2003;  17 7-10
  • 62 Verge CF, Gianani R, Yu L, Pietropaolo M, Smith T, Jackson RA, Soeldner JS, Eisenbarth GS. Late progression to diabetes and evidence for chronic beta-cell autoimmunity in identical twins of patients with type I diabetes.  Diabetes. 1995;  44 1176-1179
  • 63 Walsh AC, Feulner JA, Reilly A. Evidence for functionally significant polymorphism of human glutamate cysteine ligase catalytic subunit: association with glutathione levels and drug resistance in the National Cancer Institute tumor cell line panel.  Toxicol Sci. 2001;  61 218-223
  • 64 Walsh AC, Li W, Rosen DR, Lawrence DA. Genetic mapping of GLCLC, the human gene encoding the catalytic subunit of gamma-glutamyl-cysteine synthetase, to chromosome band 6p12 and characterization of a polymorphic trinucleotide repeat within its 5′ untranslated region.  Cytogenet Cell Genet. 1996;  75 14-16
  • 65 Weets I, Kaufman L, Van Der Auwera B, Crenier L, Rooman RP, De Block C, Casteels K, Weber E, Coeckelberghs M, Laron Z, Pipeleers DG, Gorus FK. Seasonality in clinical onset of Type 1 diabetes in Belgian patients above the age of 10 is restricted to HLA-DQ2/DQ8-negative males, which explains the male to female excess in incidence.  Diabetologia. 2004;  26 26
  • 66 Weets I, Van Autreve J, Van der Auwera BJ, Schuit FC, Du Caju MV, Decochez K, De Leeuw IH, Keymeulen B, Mathieu C, Rottiers R, Dorchy H, Quartier E, Gorus FK. Male-to-female excess in diabetes diagnosed in early adulthood is not specific for the immune-mediated form nor is it HLA-DQ restricted: possible relation to increased body mass index.  Diabetologia. 2001;  44 40-47

Correspondence

L. M. Bekris

Department of Medicine

University of Washington

Box 358280

Seattle

WA 98195

Phone: +206/277/64 55

Fax: +206/543/31 69

    >