Planta Med 2007; 73(4): 348-354
DOI: 10.1055/s-2007-967172
Original Paper
Pharmacology
© Georg Thieme Verlag KG Stuttgart · New York

Interaction of Flavonoids and Intestinal Facilitated Glucose Transporters

Chia-Hao Chen1 , Hao-Jui Hsu1 , Yun-Ju Huang1 , Chun-Jung Lin1
  • 1School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
Further Information

Publication History

Received: September 11, 2006 Revised: February 15, 2007

Accepted: February 21, 2007

Publication Date:
04 April 2007 (online)

Abstract

The intestinal facilitated glucose transporter, GLUT2, is a high-turnover transport system and is important to handle the large transepithelial substance flux. Since intestinal GLUT2 is normally located at the basolateral side, glucose uptake in the presence of flavonoids was measured using basolateral membrane vesicles (BLMV) isolated from the rat jejunum to investigate the interaction between flavonoids and intestinal facilitated glucose transporters. In addition, basolateral uptake of flavonoids was studied in Caco-2 cells. As a result, in the BLMV study most flavonoids (glycosides or aglycones) at 0.1 mM inhibited glucose uptake in BLMV; epicatechin gallate (ECG) showed the highest inhibitory activity (about 33 %), followed by quercetin 3-O-glucoside (Q3G), fisetin and gossypin (about 25 - 28 % inhibition). The dose-response study showed that the IC50 values for ECG and Q3G on glucose uptake in BLMV were 294 ± 89 μM and 357 ± 52 μM, respectively. Kinetic analyses showed that ECG and Q3G competitively inhibited glucose uptake in BLMV with inhibition constants (Ki ) of 332 ± 42 μM and 404 ± 45 μM, respectively. In Caco-2 cells, basolateral uptake of Q3G was significantly inhibited by phloretin, a GLUT2 inhibitor (0.40 ± 0.05 vs. 0.24 ± 0.03 nmole/mg protein without and with phloretin, respectively). On the other hand, phloretin did not show inhibitory activity on basolateral uptake of ECG in Caco-2 cells (1.26 ± 0.05 vs. 1.22 ± 0.07 nmole/mg protein without and with phloretin, respectively). The data showed that the intestinal facilitated glucose transporter recognizes a variety of flavonoids with or without conjugation. In addition, GLUT2 can be responsible for the transport of Q3G across the intestinal basolateral membrane.

References

  • 1 Middleton E, Kandaswami C, Theoharides T C. The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease and cancer.  Pharmacol Rev. 2000;  52 673-751.
  • 2 Walgren R A, Lin J T, Kinne R KH, Walle T. Cellular uptake of dietary flavonoid quercetin 4’-β-glucoside by sodium-dependent glucose transporter SGLT1.  J Pharmacol Exp Ther. 2000;  294 837-43.
  • 3 Ader P, Blöck M, Pietzsch S, Wolffram S. Interaction of quercetin glucosides with the intestinal sodium/glucose co-transporter (SGLT-1).  Cancer Lett. 2001;  62 175-80.
  • 4 Wolffram S, Block M, Ader P. Quercetin-3-glucoside is transported by the glucose carrier SGLT1 across the brush border membrane of rat small intestine.  J Nutr. 2002;  132 630-5.
  • 5 Cermak R, Landgraf S, Wolffram S. Quercetin glucosides inhibit glucose uptake into brush-border membrane vesicles of porcine jejunum.  Br J Nutr. 2004;  91 849-55.
  • 6 Kobayashi Y, Suzuki M, Satsu H, Arai S, Hara Y, Suzuki K. et al . Green tea polyphenols inhibit the sodium-dependent glucose transporter of intestinal epithelial cells by a competitive mechanism.  J Agric Food Chem. 2000;  48 5618-23.
  • 7 Kellett G L. The facilitated component of intestinal glucose absorption.  J Physiol. 2001;  531 585-95.
  • 8 Song J, Kwon O, Chen S, Daruwala R, Eck P, Park J B. et al . Flavonoid inhibition of sodium-dependent vitamin C transporter 1 (SVCT1) and glucose transporter isoform 2 (GLUT2), intestinal transporters for vitamin C and glucose.  J Biol Chem. 2002;  277 15 252-60.
  • 9 Johnston K, Sharp P, Clifford M, Morgan L. Dietary polyphenols decrease glucose uptake by human intestinal Caco-2 cells.  FEBS Lett. 2005;  579 1653-7.
  • 10 Lin C J, Chen C H, Liu F W, Kang J J, Chen C K, Lee S L. et al . Inhibition of intestinal glucose uptake by aporphines and secoaporphines.  Life Sci. 2006;  79 144-53.
  • 11 Jørgensen P L, Skou J C. Purification and characterization of (Na+-K+)-ATPase. I. The influence of detergents on the activity of (Na+ + K+)-ATPase in preparations from the outer medulla of rabbit kidney.  Biochim Biophys Acta. 1971;  233 366-80.
  • 12 Fiske C H, Subbarow Y. The colorimetric determination of phosphorus.  J Biol Chem. 1925;  66 375-400.
  • 13 Fujita M, Ohta H, Kawai K, Matsui H, Nakao M. Differential isolation of microvillous and basolateral plasma membranes from intestinal mucosa: mutually exclusive distribution of digestive enzymes and ouabain-sensitive ATPase.  Biochim Biophys Acta. 1972;  274 336-47.
  • 14 Wilson J W, Webb K E. Simultaneous isolation and characterization of brush border and basolateral membrane vesicles from bovine small intestine.  J Anim Sci. 1990;  68 583-90.
  • 15 Scalera V, Storelli C, Storelli-Joss C, Haase W, Murer H. A simple and fast method for the isolation of basolateral plasma membranes from rat small-intestinal epithelial cells.  Biochem J. 1980;  186 177-81.
  • 16 Sesink A LA, Arts I CW, Faassen-Peters M, Hollman P CH. Intestinal uptake of quercetin-3-glucoside in rats involves hydrolysis by lactase phlorizin hydrolase.  J Nutr. 2003;  133 773-6.
  • 17 Arts I CW, Sesink A LA, Faassen-Peters M, Hollman P CH. The type of sugar moiety is a major determinant of the small intestinal uptake and subsequent biliary excretion of dietary quercetin glycosides.  Br J Nutr. 2004;  91 841-7.
  • 18 Day A J, Gee J M, DuPont M S, Johnson I T, Williamson G. Absorption of quercetin-3-glucoside and quercetin-4’-glucoside in the rat small intestine: the role of lactase phlorizin hydrolase and the sodium-dependent glucose transporter.  Biochem Pharmacol. 2003;  65 1199-206.
  • 19 Olthof M R, Hollman P CH, Vre T B, Katan M B. Bioavailabilities of quercetin-3-glucoside and quercetin-4′-glucoside do not differ in humans.  J Nutr. 2000;  130 1200-3.
  • 20 Graefe E U, Wittig J, Mueller S, Riethling A K, Uehleke B, Drewelow B. et al . Pharmacokinetics and bioavailability of quercetin glycosides in humans.  J Clin Pharmacol. 2001;  41 492-9.
  • 21 Juergenliemk G, Boje K, Huewel S, Lohmann C, Galla H J, Nahrstedt A. In Vitro studies indicate that miquelianin (quercetin 3-O-β-D-glucuronopyranoside) is able to reach the CNS from the small intestine.  Planta Med. 2003;  69 1013-7.
  • 22 Hossain S J, Kato H, Aoshima H, Yokoyama T, Yamada M, Hara Y. Polyphenol-induced inhibition of the response of Na+/glucose cotransporter expressed in Xenopus oocytes.  J Agric Food Chem. 2002;  50 5215-9.
  • 23 Walgren R A, Walle-Kristina U, Walle T. Transport of quercetin and its glucosides across human intestinal epithelial Caco-2 cells.  Biochem Pharmacol. 1998;  55 1721-7.
  • 24 Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L. Polyphenols: food sources and bioavailability.  Am J Clin Nutr. 2004;  79 727-47.
  • 25 Zhu Q Y, Zhang A, Tsang D, Huang Y, Chen Z Y. Stability of green tea catechins.  J Agric Food Chem. 1997;  45 4624-8.
  • 26 Yoshino K, Suzuki M, Sasaki K, Miyase T, Sano M. Formation of antioxidants from (-)-epigallocatechin gallate in mild alkaline fluids, such as authentic intestinal juice and mouse plasma.  J Nutr Biochem. 1999;  10 223-9.
  • 27 Au A, Gupta A, Schembri P, Cheeseman C I. Rapid insertion of GLUT2 into the rat jejunal brush-border membrane promoted by glucagon-like peptide 2.  Biochem J. 2002;  367 247-54.
  • 28 Marks J, Carvou N JC, Debnam E S, Srai S K, Unwin R J. Diabetes increases facilitative glucose uptake and GLUT2 expression at the rat proximal tubule brush border membrane.  J Physiol. 2003;  553 137-45.

Chun-Jung Lin, Ph. D.

School of Pharmacy

College of Medicine

National Taiwan University

12F, 1 Jen-Ai Road, Section 1

Taipei

Taiwan 100

Republic of China

Phone: +886-2-2312-3456 ext 8386

Fax: +886-2-2391-9098

Email: clement@ha.mc.ntu.edu.tw

    >