Planta Med 2007; 73(4): 299-309
DOI: 10.1055/s-2007-967138
Review
© Georg Thieme Verlag KG Stuttgart · New York

Willmar Schwabe Award 2006: Antiplasmodial and Antitumor Activity of Artemisinin - From Bench to Bedside

Thomas Efferth1
  • 1German Cancer Research Center, Heidelberg, Germany
Further Information

Publication History

Received: February 2, 2007

Accepted: February 4, 2007

Publication Date:
12 March 2007 (online)

Abstract

Secondary metabolites from plants serve as defense against herbivores, microbes, viruses, or competing plants. Many medicinal plants have pharmacological activities and may, thus, be a source for novel treatment strategies. During the past 10 years, we have systematically analyzed medicinal plants used in traditional Chinese medicine and focused our interest on Artemisia annua L. (qinhao, sweet wormwood). We found that the active principle of Artemisia annua L., artemisinin, exerts not only antimalarial activity but also profound cytotoxicity against tumor cells. The inhibitory activity of artemisinin and its derivatives towards cancer cells is in the nano- to micromolar range. Candidate genes that may contribute to the sensitivity and resistance of tumor cells to artemisinins were identified by pharmacogenomic and molecular pharmacological approaches. Target validation was performed using cell lines transfected with candidate genes or corresponding knockout cells. The identified genes are from classes with diverse biological functions; for example, regulation of proliferation (BUB3, cyclins, CDC25A), angiogenesis (vascular endothelial growth factor and its receptor, matrix metalloproteinase-9, angiostatin, thrombospondin-1) or apoptosis (BCL-2, BAX, NF-κB). Artesunate triggers apoptosis both by p53-dependent and -independent pathways. Antioxidant stress genes (thioredoxin, catalase, γ-glutamylcysteine synthetase, glutathione S-transferases) as well as the epidermal growth factor receptor confer resistance to artesunate. Cell lines overexpressing genes that confer resistance to established antitumor drugs (MDR1, MRP1, BCRP, dihydrofolate reductase, ribonucleotide reductase) were not cross-resistant to artesunate, indicating that artesunate is not involved in multidrug resistance. The anticancer activity of artesunate has also been shown in human xenograft tumors in mice. First encouraging experience in the clinical treatment of patients suffering from uveal melanoma calls for comprehensive clinical trials with artesunate for cancer treatment in the near future.

References

  • 1 Tang W, Hemm I, Bertram B. Recent development of antitumor agents from Chinese herbal medicines; part I. Low molecular compounds.  Planta Med. 2003;  69 97-108.
  • 2 Tang W, Hemm I, Bertram B. Recent development of antitumor agents from Chinese herbal medicines. Part II. High molecular compounds (3).  Planta Med. 2003;  69 193-201.
  • 3 Natural compounds in cancer therapy. Portland; Oregon Medical Press 2001.
  • 4 Newman D J, Cragg G M, Snader K M. atural products as sources of new drugs over the period 1981 - 2002.  J Nat Prod. 2003;  66 1022-3.
  • 5 Efferth T, Rücker G, Falkenberg M, Manns D, Olbrich A, Fabry U. et al . Detection of apoptosis in KG-1a leukemic cells treated with investigational drugs.  Arzneimittelforschung. 1996;  46 196-200.
  • 6 Tan R X, Zheng W F, Tang H Q. Biologically active substances from the genus Artemisia .  Planta Med. 1998;  64 295-302.
  • 7 Efferth T, Olbrich A, Sauerbrey A, Ross D D, Gebhart E, Neugebauer M. Activity of ascaridol from the anthelmintic herb Chenopodium anthelminticum L. against sensitive and multidrug-resistant tumor cells.  Anticancer Res. 2002;  22 4221-4.
  • 8 Efferth T, Sauerbrey A, Halatsch M E, Ross D D, Gebhart E. Molecular modes of action of cephalotaxine and homoharringtonine from the coniferous tree Cephalotaxus hainanensis in human tumor cell lines.  Naunyn Schmiedebergs Arch Pharmacol. 2003;  367 56-67.
  • 9 Efferth T, Kaina B. Microarray-based prediction of cytotoxicity of tumor cells to arsenic trioxide.  Cancer Genomics Proteomics. 2004;  1 363-70.
  • 10 Efferth T, Chen Z, Kaina B, Wang G. Molecular determinants of response of tumor cells to berberine.  Cancer Genomics Proteomics. 2005;  2 115-24.
  • 11 Efferth T, Rauh R, Kahl S, Tomicic M, Bochzelt H, Tome M E. et al . Molecular modes of action of cantharidin in tumor cells.  Biochem Pharmacol. 2005;  69 811-8.
  • 12 Efferth T. Microarray-based prediction of cytotoxicity of tumor cells to cantharidin.  Oncol Rep. 2005;  13 459-63.
  • 13 Rinner B, Siegl V, Purstner P, Efferth T, Brem B, Greger H. et al . Activity of novel plant extracts against medullary thyroid carcinoma cells.  Anticancer Res. 2004;  24 495-500.
  • 14 Adams M, Efferth T, Bauer R. Activity-guided isolation of scopoletin and isoscopoletin, the inhibitory active principles towards CCRF-CEM leukaemia cells and multi-drug resistant CEM/ADR5000 cells, from Artemisia argyi .  Planta Med. 2006;  72 862-4.
  • 15 Fu Y J, Efferth T, Zu Y G. Optimization of luteolin separation from pigeonpea [Cajanus Cajan (L.) Millsp.] leaves by macroporous resins.  J Chromatogr A. 2006;  1137 145-52.
  • 16 Wang Y F, Cao J X, Efferth T, Lai G F, Luo S D. Cytotoxic and new tetralone derivatives from Berchemia floribunda (Wall.) Brongn.  Chem Biodivers. 2006;  3 646-53.
  • 17 Wang Y F, Lai G F, Efferth T, Cao J X, Luo S D. New glycosides from Tetracentron sinense and their cytotoxic activity.  Chem Biodivers. 2006;  3 1023-30.
  • 18 Klayman D L. Qinghaosu (artemisinin): an antimalarial drug from China.  Science. 1985;  228 1049-55.
  • 19 Li Y, Wu Y L. How Chinese scientists discovered qinghaosu (artemisinin) and developed its derivatives. What are the future perspectives?.  Med Trop. 1998;  58 9S-12S.
  • 20 Yeung S, Pongtavornpinyo W, Hastings I M, Mills A J, White N J. Antimalarial drug resistance, artemisinin-based combination therapy, and the contribution of modeling to elucidating policy choices.  Am J Trop Med Hyg. 2004;  71 179-86.
  • 21 Merali S, Meshnick S R. Susceptibility of Pneumocystis carinii to artemisinin in vitro .  Antimicrob Agents Chemother. 1991;  35 1225-7.
  • 22 Ke O Y, Krug E C, Marr J J, Berens R L. Inhibition of growth of Toxoplasma gondii by qinghaosu and derivatives.  Antimicrob Agents Chemother. 1990;  34 1961-5.
  • 23 Efferth T, Marschall M, Wang X, Huong S M, Hauber I, Olbrich A. et al . Antiviral activity of artesunate towards wild-type, recombinant, and ganciclovir-resistant human cytomegaloviruses.  J Mol Med. 2002;  80 233-42.
  • 24 Romero M R, Efferth T, Serrano M A, Castano B, Macias R I, Briz O. et al . Effect of artemisinin/artesunate as inhibitors of hepatitis B virus production in an ”in vitro” replicative system.  Antiviral Res. 2005;  68 75-83.
  • 25 Kaptein S J, Efferth T, Leis M, Rechter S, Auerochs S, Kalmer M. et al . The anti-malaria drug artesunate inhibits replication of cytomegalovirus in vitro and in vivo .  Antiviral Res. 2006;  69 60-9.
  • 26 Romero M R, Serrano M A, Vallejo M, Efferth T, Alvarez M, Marin J J. Antiviral effect of artemisinin from Artemisia annua against a model member of the Flaviviridae family, the Bovine Viral Diarrhoea Virus (BVDV).  Planta Med. 2006;  72 1169-74.
  • 27 Sun W C, Han J X, Yang W Y, Deng D A, Yue X F. Antitumor activities of 4 derivatives of artemisic acid and artemisinin B in vitro .  Acta Pharmacol Sin. 1992;  13 541-3.
  • 28 Woerdenbag H J, Moskal T A, Pras N, Malingre T M, el-Feraly F S, Kampinga H H. et al . Cytotoxicity of artemisinin-related endoperoxides to Ehrlich ascites tumor cells.  J Nat Prod. 1993;  56 849-56.
  • 29 Zheng G Q. Cytotoxic terpenoids and flavonoids from Artemisia annua .  Planta Med. 1994;  60 54-7.
  • 30 Lai H, Singh N P. Selective cancer cell cytotoxicity from exposure to dihydroartemisinin and holotransferrin.  Cancer Lett. 1995;  91 41-6.
  • 31 Beekman A C, Barentsen A R, Woerdenbag H J, Van Uden W, Pras N, Konings A W. et al . Stereochemistry-dependent cytotoxicity of some artemisinin derivatives.  J Nat Prod. 1997;  60 325-30.
  • 32 Butler D. Time to put malaria control on the global agenda.  Nature. 1997;  386 535-41.
  • 33 World Health O rganization. Severe falciparum malaria.  Trans R Soc Trop Med Hyg. 2000;  94 1-75.
  • 34 White N J. Antimalarial drug resistance.  J Clin Invest. 2004;  113 1084-92 .
  • 35 Silachamroon U, Krudsood S, Phophak N, Looareesuwan S. Management of malaria in Thailand.  Korean J Parasitol. 2002;  40 1-7.
  • 36 Mutabingwa T K. Artemisinin-based combination therapies (ACTs): best hope for malaria treatment but inaccessible to the needy!.  Acta Trop. 2005;  95 305-15.
  • 37 White N. Antimalarial drug resistance and combination chemotherapy.  Philos Trans R Soc London B Biol Sci. 1999;  354 739-49.
  • 38 Yeung S, Pongtavornpinyo W, Hastings I M, Mills A J, White N J. Antimalarial drug resistance, artemisinin-based combination therapy, and the contribution of modeling to elucidating policy choices.  Am J Trop Med Hyg. 2004;  71 179-86.
  • 39 Mishra S K, Asthana O P, Mohanty S, Patnaik J K, Das B S, Srivastava J S. et al . Effectiveness of α, β-arteether in acute falciparum malaria.  Trans R Soc Trop Med Hyg. 1995;  89 299-302.
  • 40 Mohanty S, Mishra S K, Satpathy S K, Satpathy S, Patnaik J K. Alpha-beta arteether for the treatment of complicated falciparum malaria.  Trans R Soc Trop Med Hyg. 1997;  91 328-30.
  • 41 Price R N, Nosten F, Luxemburger C, ter Kuile F O, Paiphun L, Chongsuphajasiddhi T. et al . Effects of artemisinin derivatives on malaria transmissibility.  Lancet. 1996;  347 1654-8.
  • 42 Mohanty S, Patel D K, Pati S S, Mishra S K. Adjuvant therapy in cerebral malaria.  Indian J Med Res. 2006;  124 245-60.
  • 43 Ribeiro I R, Olliaro P. Safety of artemisinin and its derivatives. A review of published and unpublished clinical trials.  Med Trop (Mars). 1998;  58 50-3.
  • 44 Adjuik M, Babiker A, Garner P, Olliaro P, Taylor W, White N. International Artemisinin Study Group. Artesunate combinations for treatment of malaria: meta-analysis.  Lancet. 2004;  363 9-17.
  • 45 Davies T ME, Karunajeewa H A, Ilett K F. Artemisinin-based combination therapies for uncomplicated malaria.  Med J Aust. 2005;  182 181-5.
  • 46 Bar-Zeev N, White N. Evidence behind the WHO guidelines: Hospital Care for Children: efficacy and safety of artemisinin derivatives in children with malaria.  J Trop Pediatr. 2006;  52 78-82.
  • 47 Efferth T, Mattern J, Volm M. Immunohistochemical detection of P-glycoprotein, glutathione S-transferase and DNA topoisomerase II in human tumors.  Oncology. 1992;  49 368-75.
  • 48 Efferth T, Volm M. Reversal of doxorubicin-resistance in sarcoma 180 tumor cells by inhibition of different resistance mechanisms.  Cancer Lett. 1993;  70 197-202.
  • 49 Volm M, Kästel M, Mattern J, Efferth T. Expression of resistance factors (P-glycoprotein, glutathione S-transferase-pi, and topoisomerase II) and their interrelationship to proto-oncogene products in renal cell carcinomas.  Cancer. 1993;  71 3981-7.
  • 50 Volm M, Koomägi R, Mattern J, Efferth T. Expression profile of genes in non-small cell lung carcinomas from long-term surviving patients.  Clin Cancer Res. 2002;  8 1843-8.
  • 51 Volm M, Koomägi R, Mattern J, Efferth T. Protein expression profiles indicative for drug resistance of non-small cell lung cancer.  Br J Cancer. 2002;  87 251-7.
  • 52 Volm M, Koomägi R, Efferth T. Prediction of drug sensitivity and resistance of cancer by protein expression profiling.  Cancer Genomics Proteomics. 2004;  1 157-66.
  • 53 Efferth T, Grassmann R. Impact of viral oncogenesis on responses to anti-cancer drugs and irradiation.  Crit Rev Oncog. 2000;  11 165-87.
  • 54 Efferth T, Volm M. Pharmacogenetics for individualized cancer chemotherapy.  Pharmacol Ther. 2005;  107 155-76.
  • 55 Efferth T, Fabry U, Osieka R. Apoptosis and resistance to daunorubicin in human leukemic cells.  Leukemia. 1997;  11 1180-6.
  • 56 Pommier Y, Sordet O, Antony S, Hayward R L, Kohn K W. Apoptosis defects and chemotherapy resistance: molecular interaction maps and networks.  Oncogene. 2004;  23 2934-9.
  • 57 Lotem J, Sachs L. Control of apoptosis in hematopoiesis and leukemia by cytokines, tumor suppressor and oncogenes.  Leukemia. 1996;  10 925-31.
  • 58 Efferth T, Fabry U, Osieka R. Interleukin-6 affects melphalan-induced DNA damage and repair in human multiple myloma cells.  Anticancer Res. 2002;  22 231-4.
  • 59 Efferth T, Olbrich A, Bauer R. mRNA expression profiles for the response of human tumor cell lines to the antimalarial drugs artesunate, arteether, and artemether.  Biochem Pharmacol. 2002;  64 617-23.
  • 60 Efferth T, Sauerbrey A, Olbrich A, Gebhart E, Rauch P, Weber H O. et al . Molecular modes of action of artesunate in tumor cell lines.  Mol Pharmacol. 2003;  64 382-94.
  • 61 Efferth T. Mechanistic perspectives for 1,2,4-trioxanes in anti-cancer therapy.  Drug Resist Updat. 2005;  8 85-97.
  • 62 Efferth T. Molecular pharmacology and pharmacogenomics of artemisinin and its derivatives in cancer cells.  Curr Drug Targets. 2006;  7 407-21.
  • 63 Price R, van Vugt M, Nosten F, Luxemburger C, Brockman A, Phaipun L. et al . Artesunate versus artemeter for the treatment of recrudescent multidrug-resistant falciparum malaria.  Am J Trop Med Hyg. 1998;  59 883-8.
  • 64 Efferth T, Dunstan H, Sauerbrey A, Miyachi H, Chitambar C R. The anti-malarial artesunate is also active against cancer.  Int J Oncol. 2001;  18 767-73.
  • 65 Efferth T, Davey M, Olbrich A, Rücker G, Gebhart E, Davey R. Activity of drugs from traditional Chinese medicine toward sensitive and MDR1- or MRP1-overexpressing multidrug-resistant human CCRF-CEM leukemia cells.  Blood Cells Mol Dis. 2002;  28 160-8.
  • 66 Semenov A, Olson J E, Rosenthal P J. Antimalarial synergy of cysteine and aspartic protease inhibitors.  Antimicrob Agents Chemother. 1998;  42 2254-8.
  • 67 Shenai B R, Sijwali P S, Singh A, Rosenthal P J. Characterization of native and recombinant falcipain-2, a principal trophozoite cysteine protease and essential hemoglobinase of Plasmodium falciparum .  J Biol Chem. 2000;  275 29 000-10.
  • 68 Berman P A, Adams P A. Artemisinin enhances heme-catalysed oxidation of lipid membranes.  Free Radic Biol Med. 1997;  22 1283-8.
  • 69 Krishna S, Uhlemann A C, Haynes R K. Artemisinins: mechanisms of action and potential for resistance.  Drug Resist Updat. 2004;  7 233-44.
  • 70 Posner G H, Oh C H. A simple chemical model system to probe the mechanism(s) for the antimalarial activity of artemisinin(qinghaosu).  J Am Chem Soc. 1992;  114 8328-9.
  • 71 Meshnick S R, Yang Y Z, Lima V, Kuypers F, Kamchonwongpaisan S, Yuthavong Y. Iron-dependent free radical generation from the antimalarial agent artemisinin (qinghaosu).  Antimicrob Agents Chemother. 1993;  37 1108-14.
  • 72 Butler A R, Gilbert B C, Hulme P, Irvine L R, Renton L, Whitwood A C. EPR evidence for the involvement of free radicals in the iron-catalysed decomposition of qinghaosu (artemisinin) and some derivatives; antimalarial action of some polycyclic endoperoxides.  Free Radic Res. 1998;  28 471-6.
  • 73 Asawamahasakda W, Ittarat I, Pu Y M, Ziffer H, Meshnick S R. Reaction of antimalarial endoperoxides with specific parasite proteins.  Antimicrob Agents Chemother. 1994;  38 1854-8.
  • 74 Bhisutthibhan J, Meshnick S R. Immunoprecipitation of [(3)H]dihydroartemisinin translationally controlled tumor protein (TCTP) adducts from Plasmodium falciparum-infected erythrocytes by using anti-TCTP antibodies.  Antimicrob Agents Chemother. 2001;  45 2397-9.
  • 75 Eckstein-Ludwig U, Webb R J, Van Goethem I D, East J M, Lee A G, Kimura M. et al . Artemisinins target the SERCA of Plasmodium falciparum .  Nature. 2003;  424 957-61.
  • 76 Uhlemann A C, Cameron A, Eckstein-Ludwig U, Fischbarg J, Iserovich P, Zuniga F A. et al . A single amino acid residue can determine the sensitivity of SERCAs to artemisinins.  Nat Struct Mol Biol. 2005;  12 628-9.
  • 77 Parapini S, Basilico N, Mondani M, Olliaro P, Taramelli D, Monti D. Evidence that haem iron in the malaria parasite is not needed for the antimalarial effects of artemisinin.  FEBS Lett. 2004;  575 91-4.
  • 78 Efferth T, Oesch F. Oxidative stress response of tumor cells: microarray-based comparison between artemisinins and anthracyclines.  Biochem Pharmacol. 2004;  68 3-10.
  • 79 Efferth T, Briehl M M, Tome M E. Role of antioxidant genes for the activity of artesunate against tumor cells.  Int J Oncol. 2003;  23 1231-5.
  • 80 Efferth T, Volm M. Glutathione-related enzymes contribute to resistance of tumor cells and low toxicity in normal organs to artesunate.  In Vivo. 2005;  19 225-32.
  • 81 Shterman N, Kupfer B, Moroz C. Comparison of transferrin receptors, iron content and isoferritin profile in normal and malignant human breast cell lines.  Pathobiology. 1991;  59 19-25.
  • 82 Sutherland R, Delia D, Schneider C, Newman R, Kemshead J, Greaves M. Ubiquitous cell-surface glycoprotein on tumor cells is proliferation-associated receptor for transferrin.  Proc Natl Acad Sci U S A. 1981;  78 4515-9.
  • 83 Gatter K C, Brown G, Trowbridge I S, Woolston R E, Mason D Y. Transferrin receptors in human tissues: their distribution and possible clinical relevance.  J Clin Pathol. 1983;  36 539-45.
  • 84 Efferth T, Benakis A, Romero M R, Tomicic M, Rauh R, Steinbach D. et al . Enhancement of cytotoxicity of artemisinins toward cancer cells by ferrous iron.  Free Radic Biol Med. 2004;  37 998-1009.
  • 85 Moore J C, Lai H, Li J R, Ren R L, McDougall J A, Singh N P. et al . Oral administration of dihydroartemisinin and ferrous sulfate retarded implanted fibrosarcoma growth in the rat.  Cancer Lett. 1995;  98 83-7.
  • 86 Singh N P, Lai H. Selective toxicity of dihydroartemisinin and holotransferrin towards human breast cancer cells.  Life Sci. 2001;  70 49-56.
  • 87 Lai H, Sasaki T, Singh N P, Messay A. Effects of artemisinin-tagged holotransferrin on cancer cells.  Life Sci. 2005;  76 1267-79.
  • 88 Meshnick S R, Yang Y Z, Little B. Alkylation of proteins by artemisinin. Effect of heme, pH and drug structure.  Biochem Pharmacol. 1994;  48 569-73.
  • 89 Gachet Y, Tournier S, Lee M, Lazaris-Karatzas A, Poulton T, Bommer U A. The growth-related, translationally controlled protein P23 has properties of a tubulin binding protein and associates transiently with microtubules during the cell cycle.  J Cell Sci. 1999;  112 1257-71.
  • 90 Baudet C, Perret E, Delpech B, Kaghad M, Brachet P, Wion D. et al . Differentially expressed genes in C6.9 glioma cells during vitamin D-induced cell death program.  Cell Death Differ. 1998;  5 116-25.
  • 91 Bommer U A, Thiele B J. The translationally controlled tumour protein (TCTP).  Int J Biochem Cell Biol. 2004;  36 379-85.
  • 92 Folkman J. The role of angiogenesis in tumor growth.  Semin Cancer Biol. 1992;  3 65-71.
  • 93 Kerbel R, Folkman J. Clinical translation of angiogenesis inhibitors.  Nat Rev Cancer. 2002;  2 727-39.
  • 94 Shimizu K, Oku N. Cancer anti-angiogenic therapy.  Biol Pharm Bull. 2004;  27 599-605.
  • 95 Chen H H, Zhou H J, Fang X. Inhibition of human cancer cell line growth and human umbilical vein endothelial cell angiogenesis by artemisinin derivatives in vitro .  Pharmacol Res. 2003;  48 231-6.
  • 96 Chen H H, Zhou H J, Wang W Q, Wu G D. Antimalarial dihydroartemisinin also inhibits angiogenesis.  Cancer Chemother Pharmacol. 2004;  53 423-32.
  • 97 Chen H H, Zhou H J, Wu G D, Lou X E. Inhibitory effects of artesunate on angiogenesis and on expressions of vascular endothelial growth factor and VEGF receptor KDR/flk-1.  Pharmacology. 2004;  71 1-9.
  • 98 Dell'Eva R, Pfeffer U, Vene R, Anfosso L, Forlani A, Albini A. et al . Inhibition of angiogenesis in vivo and growth of Kaposi's sarcoma xenograft tumors by the anti-malarial artesunate.  Biochem Pharmacol. 2004;  68 2359-66.
  • 99 Huan-huan C, Li-Li Y, Shang-Bin L. Artesunate reduces chicken chorioallantoic membrane neovascularisation and exhibits antiangiogenic and apoptotic activity on human microvascular dermal endothelial cell.  Cancer Lett. 2004;  211 163-73.
  • 100 Anfosso L, Efferth T, Albini A, Pfeffer U. Microarray expression profiles of angiogenesis-related genes predict tumor cell response to artemisinins.  Pharmacogenomics J. 2006;  6 269-78.
  • 101 Li Y, Shan F, Wu J M, Wu G S, Ding J, Xiao D. et al . Novel antitumor artemisinin derivatives targeting G1 phase of the cell cycle.  Bioorg Med Chem Lett. 2001;  11 5-8.
  • 102 Sadava D, Phillips T, Lin C, Kane S E. Transferrin overcomes drug resistance to artemisinin in human small-cell lung carcinoma cells.  Cancer Lett. 2002;  179 151-6.
  • 103 Wang Q, Wu L M, Zhao Y, Zhang X L, Wang N P. The anticancer effect of artesunate. and its mechanism.  Yao Xue Xue Bao. 2002;  37 477-8.
  • 104 Singh N P, Lai H C. Artemisinin induces apoptosis in human cancer cells.  Anticancer Res. 2004;  24 2277-80.
  • 105 Yamachika E, Habte T, Oda D. Artemisinin: an alternative treatment for oral squamous cell carcinoma.  Anticancer Res. 2004;  24 2153-60.
  • 106 Baselga J. Why the epidermal growth factor receptor. The rationale for cancer therapy.  Oncologist. 2002;  7 2-8.
  • 107 Efferth T, Ramirez T, Gebhart E, Halatsch M E. Combination treatment of glioblastoma multiforme cell lines with the anti-malarial artesunate and the epidermal growth factor receptor tyrosine kinase inhibitor OSI-774.  Biochem Pharmacol. 2004;  67 1689-700.
  • 108 Chen H H, Zhou H J, Wang W Q, Wu G D. Antimalarial dihydroartemisinin also inhibits angiogenesis.  Cancer Chemother Pharmacol. 2004;  53 423-32.
  • 109 Disbrow G L, Baege A C, Kierpiec K A, Yuan H, Centeno J A, Thibodeaux C A. et al . Dihydroartemisinin is cytotoxic to papillomavirus-expressing epithelial cells in vitro and in vivo .  Cancer Res. 2005;  65 10 854-61.
  • 110 Lai H, Singh N P. Oral artemisinin prevents and delays the development of 7,12-dimethylbenz[a]anthracene (DMBA)-induced breast cancer in the rat.  Cancer Lett. 2006;  231 43-8.
  • 111 Berger T G, Dieckmann D, Efferth T, Schultz E S, Funk J O, Baur A. et al . Artesunate in the treatment of metastatic uveal melanoma-first experiences.  Oncol Rep. 2005;  14 1599-603.
  • 112 Singh N P, Panwar V K. Case report of a pituitary macxroadenoma treated with artemether.  Integr Cancer Ther. 2006;  5 391-4.
  • 113 Haynes R K. Artemisinin and derivatives: the future for malaria treatment.  Curr Opin Infect Dis. 2001;  14 719-26.
  • 114 Woodrow C J, Haynes R K, Krishna S. Artemisinins.  Postgrad Med J. 2005;  81 71-8.
  • 115 Yang Y Z, Little B, Meshnick S R. Alkylation of proteins by artemisinin. Effects of heme, pH, and drug structure.  Biochem Pharmacol. 1994;  48 569-73.
  • 116 Payne A G. Exploiting intracellular iron and iron-rich compounds to effect tumor cell lysis.  Med Hypotheses. 2003;  61 206-9.
  • 117 Lyss G, Knorre A, Schmidt T J, Pahl H L, Merfort I. The anti-inflammatory sesquiterpene lactone helenalin inhibits the transcription factor NF-kappaB by directly targeting p65.  J Biol Chem. 1998;  273 33 508-16.
  • 118 Castro V, Murillo R, Klaas C A, Meunier C, Mora G, Pahl H L. et al . Inhibition of the transcription factor NF-kappa B by sesquiterpene lactones from Podachaenium eminens .  Planta Med. 2000;  66 591-5.
  • 119 Müller S, Murillo R, Castro V, Brecht V, Merfort I. Sesquiterpene lactones from Montanoa hibiscifolia that inhibit the transcription factor NF-kappa B.  J Nat Prod. 2004;  67 622-30.
  • 120 Rungeler P, Castro V, Mora G, Goren N, Vichnewski W, Pahl H L, Merfort I. et al . Inhibition of transcription factor NF-kappaB by sesquiterpene lactones: a proposed molecular mechanism of action.  Bioorg Med Chem. 1999;  7 2343-52.
  • 121 Garcia-Pineres A J, Castro V, Mora G, Schmidt T J, Strunck E, Pahl H L. et al . Cysteine 38 in p65/NF-kappaB plays a crucial role in DNA binding inhibition by sesquiterpene lactones.  J Biol Chem. 2001;  276 39 713-20.
  • 122 Siedle B, Garcia-Pineres A J, Murillo R, Schulte-Monting J, Castro V, Rungeler P. et al . Quantitative structure-activity relationship of sesquiterpene lactones as inhibitors of the transcription factor NF-kappaB.  J Med Chem. 2004;  47 6042-54.
  • 123 Wagner S, Hofmann A, Siedle B, Terfloth L, Merfort I, Gasteiger J. Development of a structural model for NF-kappaB inhibition of sesquiterpene lactones using self-organizing neural networks.  J Med Chem. 2006;  49 2241-52.
  • 124 Aldieri E, Atragene D, Bergandi L, Riganti C, Costamagna C, Bosia A. et al . Artemisinin inhibits inducible nitric oxide synthase and nuclear factor NF-kB activation.  FEBS Lett. 2003;  552 141-4.
  • 125 Li W D, Dong Y J, Tu Y Y, Lin Z B. Dihydroarteannuin ameliorates lupus symptom of BXSB mice by inhibiting production of TNF-alpha and blocking the signaling pathway NF-kappaB translocation.  Int Immunopharmacol. 2006;  6 1243-50.
  • 126 Tripathi A K, Sullivan D J, Stins M F. Plasmodium falciparum-infected erythrocytes increase intercellular adhesion molecule 1 expression on brain endothelium through NF-kappaB.  Infect Immunol. 2006;  74 3262-70.
  • 127 Geldre E van, Vergauwe A, Eeckhout E van den. State of the art of the production of the antimalarial compound artemisinin in plants.  Plant Mol Biol. 1997;  33 199-209. Erratum in: Plant Mol Biol 1998;38 : 1271.
  • 128 Abdin M Z, Israr M, Rehman R U, Jain S K. Artemisinin, a novel antimalarial drug: biochemical and molecular approaches for enhanced production.  Planta Med. 2003;  69 289-99.
  • 129 Schmid G, Hofheinz W. Total synthesis of qinghaosu.  J Am Chem Soc. 1983;  105 624-5.
  • 130 Ravindranathan T, Anil Kumar M, Menon R B, Hiremath S V. Stereoselective synthesis of artemisinin.  Tetrahedron Lett. 1990;  31 755-8.
  • 131 Avery M A, Chong W KM, Jennings-White C. Stereoselective total synthesis of (dextro)-artemisinin, the antimalarial constituent of Artemisia annua L.  J Am Chem Soc. 1992;  114 974-9.
  • 132 Jefford C W. Synthetic peroxides as antimalarials.  Curr Opin Investig Drugs. 2004;  5 866-72.
  • 133 Laughlin J C. Agricultural production of artemisinin - a review.  Trans R Soc Trop Med Hyg. 1994;  88 S21-2.
  • 134 Delabays N, Simmonnet X, Gaudin M. The genetics of artemisinin content in Artemisia annua L. and the breeding of high yielding cultivars.  Curr Med Chem. 2001;  8 1795-801.
  • 135 Jansen F H. The herbal tea approach for artemisinin as a therapy for malaria?.  Trans R Soc Trop Med Hyg. 2006;  100 285-6.
  • 136 De Jesus-Gonzalez L, Weathers P J. Tetraploid Artemisia annua hairy roots produce more artemisinin than diploids.  Plant Cell Rep. 2003;  21 809-13.
  • 137 Souret F F, Kim Y, Wyslouzil B E, Wobbe K K, Weathers P J. Scale-up of Artemisia annua L. hairy root cultures produces complex patterns of terpenoid gene expression.  Biotechnol Bioeng. 2003;  83 653-67.
  • 138 Nair M S, Acton N, Klayman D L, Kendrick K, Basile D V, Mante S. Production of artemisinin in tissue cultures of Artemisia annua .  J Nat Prod. 1986;  49 504-7.
  • 139 Elmarakby S A, el-Feraly F S, Elsohly H N, Croom E M, Hufford C D. Microbial transformation studies on arteannuin B.  J Nat Prod. 1987;  50 903-9.
  • 140 Martin V J, Pitera D J, Withers S T, Newman J D, Keasling J D. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids.  Nat Biotechnol. 2003;  21 796-802.
  • 141 Hampton T. Collaboration hopes microbe factories can supply key antimalaria drug.  JAMA. 2005;  293 785-7.
  • 142 Ro D K, Paradise E M, Ouellet M, Fisher K J, Newman K L, Ndungu J M. et al . Production of the antimalarial drug precursor artemisinic acid in engineered yeast.  Nature. 2006;  440 940-3.
  • 143 Bertea C M, Freije J R, van der Woude H, Verstappen F W, Perk L, Marquez V. et al . Identification of intermediates and enzymes involved in the early steps of artemisinin biosynthesis in Artemisia annua .  Planta Med. 2005;  71 40-7.
  • 144 Liu C, Zhao Y, Wang Y. Artemisinin: current state and perspective for biotechnological production of an antimalarial drug.  Appl Microbiol Biotechnol. 2006;  72 11-20.

Thomas Efferth

German Cancer Research Center

C015

Im Neuenheimer Feld 280

69120 Heidelberg

Germany

Phone: +49-6221-423-426

Email: t.efferth@dkfz.de

    >