Zusammenfassung
Eine effiziente Therapie der MS erfordert eine schnelle und zuverlässige Diagnose
der Erkrankung. Die MRT ist die maßgebliche paraklinische Untersuchung für die Diagnosestellung.
Auch wenn es keinen pathognomischen Befund für MS in der MRT gibt, so lassen sich
doch MS-typische Morphologien und Lokalisationen herausarbeiten. Die MRT-Kriterien
für die Diagnosestellung werden immer praktikabler und übersichtlicher für die klinische
Routine, gleichzeitig konnte sowohl die Spezifität als auch Sensitivität verbessert
werden. Neben den revidierten McDonald-Kriterien werden neue Kriterien vorgestellt,
in denen eine Kontrastmittelgabe nicht zwingend erforderlich ist. Das Kontrastmittelverhalten
gibt Möglichkeiten zur Differenzierung zu nichtentzündlichen Differenzialdiagnosen,
zeigt aber auch innerhalb der MS unterschiedliche Charakteristika. Die Kriterien zur
Erfüllung der räumlichen und zeitlichen Dissemination wurden vereinfacht. Es werden
unterschiedliche Pathomechanismen der Erkrankung postuliert, die erwarten lassen,
dass sich die große Gruppe der MS-Patienten in Subgruppen unterteilen lässt. Die beiden
Hauptkomponenten der Erkrankung, die bildmorphologisch erkennbar sind, aber auch einen
unterschiedlichen klinischen Verlauf nehmen, sind Inflammation und Neurodegeneration.
Beide Faktoren sind miteinander verknüpft, haben aber auch eine unabhängige Komponente.
Es wird eine Stratifizierung vorgestellt, die von verschiedenen zugrunde liegenden
Pathomechanismen für die zwei bildmorphologisch fassbaren Hauptkomponenten ausgeht
und so eine Subgruppierung in der MR-Bildgebung ermöglicht. Bisherige und bleibende
Fragestellung an die MRT bei MS ist die Bearbeitung der MRT-Kriterien zur Diagnosestellung.
Eine neue zukünftige Fragestellung an die MRT wird die Heterogenität bzw. Einteilung
in Subtypen sein. Dieser Artikel gibt einen Überblick über beide Fragestellungen.
Abstract
An efficient therapy of MS requires a quick and reliable diagnosis of the disease.
MRI is the most leading paraclinical examination for MS diagnosis. Even though there
is no pathognomic finding in MRI, there are MS characteristics with respect to morphology
and localization. To exclude other neurological disorders and distinguish between
different characteristics within MS, the use of contrast agent is advantageous. Postulated
MRI criteria have been increasingly adjusted to the clinical routine and have become
clearer, more sensitive, and more specific. Different imaging criteria will be introduced.
In addition to the McDonald criteria of 2001 and 2005, new criteria will be presented
in which the use of contrast agent is replaced by a second MRI and the dissemination
in time and space is simplified. Different pathomechanisms which help to separate
MS patients into subgroups are postulated. The diverse pathomechanisms also enable
the development of new pharmaceuticals to manipulate the immunologic course in different
stages. For varying therapy approaches, it is increasingly important to differentiate
the heterogeneous appearance forms into subtypes. The two visible main components
of the disorder in MRI are inflammation and neurodegeneration and are responsible
for different clinical courses. Both are interdependent and independent of each other.
We introduce a stratification which uses both components as a function of their different
outcomes to compose subgroups. The previous challenge with respect to MRI was to support
the diagnosis of MS via MRI criteria. A future problem will be the heterogeneity and
classification of subgroups. This article gives an overview of both problems.
Key words
CNS - inflammation - imaging sequences - MR imaging
Literatur
- 1
Rieckmann P.
Escalating immunomodulatory therapy of multiple sclerosis: Update (September 2006).
Nervenarzt.
2006;
77
1506-1518
- 2
Paty D W, Oger J J, Kastrukoff L F. et al .
MRI in the diagnosis of MS: a prospective study with comparison of clinical evaluation,
evoked potentials, oligoclonal banding, and CT.
Neurology.
1988;
38
180-185
- 3
Filippi M, Dousset V, McFarland H F. et al .
Role of magnetic resonance imaging in the diagnosis and monitoring of multiple sclerosis:
consensus report of the White Matter Study Group.
J Magn Reson Imaging.
2002;
15
499-504
- 4
Miller D H, Filippi M, Fazekas F. et al .
Role of magnetic resonance imaging within diagnostic criteria for multiple sclerosis.
Ann Neurol.
2004;
56
273-278
- 5
Bielekova B, Kadom N, Fisher E. et al .
MRI as a marker for disease heterogeneity in multiple sclerosis.
Neurology.
2005;
65
1071-1076
- 6
Blevins G, Martin R.
Future immunotherapies in multiple sclerosis.
Semin Neurol.
2003;
23
147-158
- 7
Lucchinetti C, Bruck W, Parisi J. et al .
Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of
demyelination.
Ann Neurol.
2000;
47
707-717
- 8
Gass A, Radu E W, Filippi M. et al .
MRI follow-up in multiple sclerosis. A guideline for quality assurance.
Fortschr Röntgenstr.
1999;
170
581-586
- 9
Swanton J K, Rovira A, Tintore M. et al .
MRI criteria for multiple sclerosis in patients presenting with clinically isolated
syndromes: a multicentre retrospective study.
Lancet Neurol.
2007;
6
677-686
- 10
Genain C P, Cannella B, Hauser S L. et al .
Identification of autoantibodies associated with myelin damage in multiple sclerosis.
Nat Med.
1999;
5
170-175
- 11
Tan I L, Schijndel R A, Pouwels P J. et al .
MR venography of multiple sclerosis.
Am J Neuroradiol.
2000;
21
1039-1042
- 12
Harting van I, Sellner J, Meyding-Lamade U. et al .
Bildgebung, Diagnosekriterien und Differenzialdiagnose der Multiplen Sklerose.
Fortschr Röntgenstr.
2003;
175
613-622
- 13
Reichenbach J R, Haacke E M.
High-resolution BOLD venographic imaging: a window into brain function.
NMR Biomed.
2001;
14
453-467
- 14
Bo L, Geurts J J, Mork S J. et al .
Grey matter pathology in multiple sclerosis.
Acta Neurol Scand Suppl.
2006;
183
48-50
- 15
Kidd D, Barkhof F, McConnell R. et al .
Cortical lesions in multiple sclerosis.
Brain.
1999;
122
17-26
- 16
Bozzali M, Cercignani M, Sormani M P. et al .
Quantification of brain gray matter damage in different MS phenotypes by use of diffusion
tensor MR imaging.
Am J Neuroradiol.
2002;
23
985-988
- 17
Geurts J J, Pouwels P J, Uitdehaag B M. et al .
Intracortical lesions in multiple sclerosis: improved detection with 3D double inversion-recovery
MR imaging.
Radiology.
2005;
236
254-260
- 18
Bagnato F, Butman J A, Gupta S. et al .
In vivo detection of cortical plaques by MR imaging in patients with multiple sclerosis.
Am J Neuroradiol.
2006;
27
2161-2167
- 19
Bo L, Geurts J J, Valk van der P. et al .
Lack of correlation between cortical demyelination and white matter pathologic changes
in multiple sclerosis.
Arch Neurol.
2007;
64
76-80
- 20
Barkhof F, Walderveen van M.
Characterization of tissue damage in multiple sclerosis by nuclear magnetic resonance.
Philos Trans R Soc Lond B Biol Sci.
1999;
354
1675-1686
- 21
Grossman R I, Gonzalez-Scarano F, Atlas S W. et al .
Multiple sclerosis: gadolinium enhancement in MR imaging.
Radiology.
1986;
161
721-725
- 22
Maravilla K R.
Enhancing our understanding of multiple sclerosis: tracking contrast-enhancing plaques
with MR imaging.
Am J Neuroradiol.
2001;
22
601-603
- 23
Nesbit G M, Forbes G S, Scheithauer B W. et al .
Multiple sclerosis: histopathologic and MR and/or CT correlation in 37 cases at biopsy
and three cases at autopsy.
Radiology.
1991;
180
467-474
- 24
He J, Grossman R I, Ge Y. et al .
Enhancing patterns in multiple sclerosis: evolution and persistence.
Am J Neuroradiol.
2001;
22
664-669
- 25
Rovira A, Alonso J, Cucurella G. et al .
Evolution of multiple sclerosis lesions on serial contrast-enhanced T 1-weighted and
magnetization-transfer MR images.
Am J Neuroradiol.
1999;
20
1939-1945
- 26
Bagnato F, Jeffries N, Richert N D. et al .
Evolution of T 1 black holes in patients with multiple sclerosis imaged monthly for
4 years.
Brain.
2003;
126
1782-1789
- 27
Masdeu J C, Quinto C, Olivera C. et al .
Open-ring imaging sign: highly specific for atypical brain demyelination.
Neurology.
2000;
54
1427-1433
- 28
Gasperini C, Paolillo A, Rovaris M. et al .
A comparison of the sensitivity of MRI after double- and triple-dose Gd-DTPA for detecting
enhancing lesions in multiple sclerosis.
Magn Reson Imaging.
2000;
18
761-763
- 29
Silver N C, Good C D, Sormani M P. et al .
A modified protocol to improve the detection of enhancing brain and spinal cord lesions
in multiple sclerosis.
J Neurol.
2001;
248
215-224
- 30
Simon J H, Li D, Traboulsee A. et al .
Standardized MR imaging protocol for multiple sclerosis: Consortium of MS Centers
consensus guidelines.
Am J Neuroradiol.
2006;
27
455-461
- 31
Kuhlmann T, Lingfeld G, Bitsch A. et al .
Acute axonal damage in multiple sclerosis is most extensive in early disease stages
and decreases over time.
Brain.
2002;
125
2202-2212
- 32
Charil A, Filippi M.
Inflammatory demyelination and neurodegeneration in early multiple sclerosis.
J Neurol Sci.
2007;
259
7-15
- 33
Walderveen M A, Truyen van L, Oosten B W. et al .
Development of hypointense lesions on T 1-weighted spin-echo magnetic resonance images
in multiple sclerosis: relation to inflammatory activity.
Arch Neurol.
1999;
56
345-351
- 34
Hahnel van S, Jost G, Knauth M. et al .
Aktuelle Anwendungen und mögliche zukünftige Applikationen der Magnetisierungstransfer-Technik
in der Neuroradiologie.
Fortschr Röntgenstr.
2004;
176
175-182
- 35
Bot J C, Barkhof F, Polman C H. et al .
Spinal cord abnormalities in recently diagnosed MS patients: added value of spinal
MRI examination.
Neurology.
2004;
62
226-233
- 36
Hacklander T, Wegner H, Haensch C A.
Die DEVIC-Krankheit: Eine seltene Differenzialdiagnose der Enzephalomyelitis disseminata.
Fortschr Röntgenstr.
2005;
177
1027-1029
- 37
Bot J C, Blezer E L, Kamphorst W. et al .
The spinal cord in multiple sclerosis: relationship of high-spatial-resolution quantitative
MR imaging findings to histopathologic results.
Radiology.
2004;
233
531-540
- 38
Bieniek M, Altmann D R, Davies G R. et al .
Cord atrophy separates early primary progressive and relapsing remitting multiple
sclerosis.
J Neurol Neurosurg Psychiatry.
2006;
77
1036-1039
- 39
Rashid W, Davies G R, Chard D T. et al .
Upper cervical cord area in early relapsing-remitting multiple sclerosis: cross-sectional
study of factors influencing cord size.
J Magn Reson Imaging.
2006;
23
473-476
- 40
Polman C H, Reingold S C, Edan G. et al .
Diagnostic criteria for multiple sclerosis: 2005 revisions to the „McDonald Criteria”.
Ann Neurol.
2005;
58
840-846
- 41
Dalton C M, Brex P A, Jenkins R. et al .
Progressive ventricular enlargement in patients with clinically isolated syndromes
is associated with the early development of multiple sclerosis.
J Neurol Neurosurg Psychiatry.
2002;
73
141-147
- 42
Kappos L, Freedman M S, Polman C H. et al .
Effect of early versus delayed interferon beta-1b treatment on disability after a
first clinical event suggestive of multiple sclerosis: a 3-year follow-up analysis
of the BENEFIT study.
Lancet.
2007;
370
389-397
- 43
Swanton J K, Fernando K, Dalton C M. et al .
Modification of MRI criteria for multiple sclerosis in patients with clinically isolated
syndromes.
J Neurol Neurosurg Psychiatry.
2006;
77
830-833
- 44
Charil A, Yousry T A, Rovaris M. et al .
MRI and the diagnosis of multiple sclerosis: expanding the concept of „no better explanation”.
Lancet Neurol.
2006;
5
841-852
- 45
Wattjes M P, Lutterbey G G, Harzheim M. et al .
Higher sensitivity in the detection of inflammatory brain lesions in patients with
clinically isolated syndromes suggestive of multiple sclerosis using high field MRI:
an intraindividual comparison of 1.5 T with 3.0 T.
Eur Radiol.
2006;
16
2067-2073
- 46
Wattjes M P, Harzheim M, Kuhl C K. et al .
Does high-field MR imaging have an influence on the classification of patients with
clinically isolated syndromes according to current diagnostic mr imaging criteria
for multiple sclerosis?.
Am J Neuroradiol.
2006;
27
1794-1798
- 47
Rossi C BA, Lindig T M, Martirosian P. et al .
Diffusion Tensor Imaging of the Spinal Cord at 1.5 and 3.0 Tesla.
Fortschr Röntgenstr.
2007;
179
219-224
- 48
Trebst C, Wiendl H, Stangel M.
Concepts of lesion development in multiple sclerosis. Current approaches and clinical-therapeutic
implications.
Nervenarzt.
2006;
77
158, 60-62, 64
- 49
Nessler S, Boretius S, Stadelmann C. et al .
Early MRI changes in a mouse model of multiple sclerosis are predictive of severe
inflammatory tissue damage.
Brain.
2007;
130
2186-2198
- 50
Miller D H.
Biomarkers and surrogate outcomes in neurodegenerative disease: lessons from multiple
sclerosis.
NeuroRx.
2004;
1
284-294
- 51
Jasperse B, Minneboo A, Groot de V. et al .
Determinants of cerebral atrophy rate at the time of diagnosis of multiple sclerosis.
Arch Neurol.
2007;
64
190-194
- 52
Fox N C, Jenkins R, Leary S M. et al .
Progressive cerebral atrophy in MS: a serial study using registered, volumetric MRI.
Neurology.
2000;
54
807-812
- 53
Gluer C C, Barkmann R, Hahn H K. et al .
Parametrische biomedizinische Bildgebung - was macht die Qualität quantitativer radiologischer
Verfahren aus?.
Fortschr Röntgenstr.
2006;
178
1187-1201
Brigitte Holst
Klinik und Poliklinik für Neuroradiologische Diagnostik und Intervention, Universitätsklinikum
Hamburg Eppendorf
Martinistraße 52
20246 Hamburg
Telefon: + 49/40/4 28 03 27 46
Fax: + 49/40/4 28 03 46 40
eMail: b.holst@uke.uni-hamburg.de