Subscribe to RSS
DOI: 10.1055/s-2007-963195
© Georg Thieme Verlag KG Stuttgart · New York
Methodische Aspekte der funktionellen Neurobildgebung im MRT-Hochfeldbereich: eine kritische Übersicht
Methodological Aspects of Functional Neuroimaging at High Field Strength: a Critical ReviewPublication History
eingereicht: 16.10.2006
angenommen: 22.4.2007
Publication Date:
26 June 2007 (online)

Zusammenfassung
Die letzten Jahre haben eindrucksvoll bewiesen, dass die Hochfeld-Magnetresonanztomografie (MRT) in nahezu allen Belangen den konventionellen Geräten bis 1,5 Tesla (T) überlegen ist. Nachdem 3-T-Geräte ihren weltweiten Siegeszug durch Forschungseinrichtungen angetreten haben, ist eine neue Gerätegeneration mit Feldstärken von 7T und mehr in Sichtweite. Mit dem Sprung zu ultrahohen Feldern nähert sich die MRT-Technologie immer mehr den physikalischen Grenzen des Machbaren an und ein immer größerer finanzieller Aufwand muss betrieben werden, um dies zu erreichen. Im vorliegenden Artikel wird versucht, einen kritischen Überblick über die Vorteile, aber auch die inhärenten Probleme der funktionellen Bildgebung bei ultrahoher Feldstärke zu geben. Dabei beschränken wir uns hauptsächlich auf T2*-basierte, nichtkontrastmittelgestützte funktionelle Bildgebungstechniken. Dargestellt wird die Bedeutung der Hochfeldtechnologie im Hinblick auf SNR, CNR, Auflösung, Sequenzen sowie auf Artefakte, Lärmbelastung und SAR. Einen besonderen Stellenwert nimmt die Diskussion der parallelen Bildgebung ein, die voraussichtlich die Weiterentwicklung bei hohen und ultrahohen Feldstärken maßgeblich bestimmen wird. Abschließend wird versucht, anhand ausgewählter Publikationen die Bedeutung hoher Feldstärken für die funktionelle Neurobildgebung zu verdeutlichen.
Abstract
The last few years have proven that high field magnetic resonance imaging (MRI) is superior in nearly every way to conventional equipment up to 1.5 tesla (T). Following the global success of 3T-scanners in research institutes and medical practices, a new generation of MRI devices with field strengths of 7T and higher is now on the horizon. The introduction of ultra high fields has brought MRI technology closer to the physical limitations and increasingly greater costs are required to achieve this goal. This article provides a critical overview of the advantages and problems of functional neuroimaging using ultra high field strengths. This review is principally limited to T2*-based functional imaging techniques not dependent on contrast agents. The main issues include the significance of high field technology with respect to SNR, CNR, resolution, and sequences, as well as artifacts, noise exposure, and SAR. Of great relevance is the discussion of parallel imaging, which will presumably determine the further development of high and ultra high field strengths. Finally, the importance of high field strengths for functional neuroimaging is explained by selected publications.
Key words
brain - technical aspects - MR functional imaging - high field strength - review
Literatur
- 1
Giesel F L, Wustenberg T, Bongers A. et al .
MR-basierte Methoden der funktionellen Bildgebung des zentralen Nervensystems.
Fortschr Röntgenstr.
2005;
177
714-730
MissingFormLabel
- 2
Heiland S.
MR-Methoden für funktionelle Untersuchungen des Gehirns. 86. Deutscher Röntgenkongress.
Fortschr Röntgenstr.
2005;
177
S 324
MissingFormLabel
- 3
Hoenig K, Schild H, Scheef L.
Where context-based semantic inhibition functionally „matters”. 2nd. International Symposium „Highfield MR in Clinical Applications”.
Fortschr Röntgenstr.
2004;
176
433
MissingFormLabel
- 4
Scheef L, Neuloh G, Brockmöller T. et al .
Rekonstruktion intraoperativer Elektroden-Grids zum direkten Vergleich funktioneller
MR-Ergebnisse mit intraoperativer Stimulation. 85. Deutscher Röntgenkongress.
Fortschr Röntgenstr.
2004;
176
S 159
MissingFormLabel
- 5
Stippich C, Heiland S, Tronnier V. et al .
Functional magnetic resonance imaging: Physiological background, technical aspects
and prerequisites for clinical use.
Fortschr Röntgenstr.
2002;
174
43-49
MissingFormLabel
- 6
Prothmann S, Puccini S, Dalitz B. et al .
Präoperatives Mapping der Sprachareale mittels funktioneller Magnetresonanztomographie
(fMRT) bei Patienten mit Hirntumoren: Paradigmenvergleich.
Fortschr Röntgenstr.
2005;
177
1522-1531
MissingFormLabel
- 7
Schild H.
Clinical highfield MR.
Fortschr Röntgenstr.
2005;
177
621-623
MissingFormLabel
- 8
Stanisz G J, Odrobina E E, Pun J. et al .
T1, T2 relaxation and magnetization transfer in tissue at 3T.
Magn Reson Med.
2005;
54
507-512
MissingFormLabel
- 9
Triantafyllou C, Hoge R D, Krueger G. et al .
Comparison of physiological noise at 1.5 T, 3 T and 7 T and optimization of fMRI acquisition
parameters.
Neuroimage.
2005;
26
243-250
MissingFormLabel
- 10
Kruger G, Kastrup A, Glover G H.
Neuroimaging at 1.5 T and 3.0 T: comparison of oxygenation-sensitive magnetic resonance
imaging.
Magn Reson Med.
2001;
45
595-604
MissingFormLabel
- 11
Ogawa S, Lee T M, Kay A R. et al .
Brain magnetic resonance imaging with contrast dependent on blood oxygenation.
Proc Natl Acad Sci U S A.
1990;
87
9868-9872
MissingFormLabel
- 12
Turner R, Jezzard P, Wen H. et al .
Functional mapping of the human visual cortex at 4 and 1.5 tesla using deoxygenation
contrast EPI.
Magn Reson Med.
1993;
29
277-279
MissingFormLabel
- 13
Gati J S, Menon R S, Ugurbil K. et al .
Experimental determination of the BOLD field strength dependence in vessels and tissue.
Magn Reson Med.
1997;
38
296-302
MissingFormLabel
- 14
Krasnow B, Tamm L, Greicius M D. et al .
Comparison of fMRI activation at 3 and 1.5 T during perceptual, cognitive, and affective
processing.
Neuroimage.
2003;
18
813-826
MissingFormLabel
- 15
Schmidt C F, Boesiger P, Ishai A.
Comparison of fMRI activation as measured with gradient- and spin-echo EPI during
visual perception.
Neuroimage.
2005;
26
852-859
MissingFormLabel
- 16
Glover G H, Law C S.
Spiral-in/out BOLD fMRI for increased SNR and reduced susceptibility artifacts.
Magn Reson Med.
2001;
46
515-522
MissingFormLabel
- 17
Glover G H, Lai S.
Self-navigated spiral fMRI: interleaved versus single-shot.
Magn Reson Med.
1998;
39
361-368
MissingFormLabel
- 18
Lu H, Mazaheri Y, Zhang R. et al .
Multishot partial-k-space EPI for high-resolution fMRI demonstrated in a rat whisker
barrel stimulation model at 3T.
Magn Reson Med.
2003;
50
1215-1222
MissingFormLabel
- 19
Liu G, Sobering G, Duyn J. et al .
A functional MRI technique combining principles of echo-shifting with a train of observations
(PRESTO).
Magn Reson Med.
1993;
30
764-768
MissingFormLabel
- 20
Ramsey N F, Brink J S, Muiswinkel van A M. et al .
Phase navigator correction in 3D fMRI improves detection of brain activation: quantitative
assessment with a graded motor activation procedure.
Neuroimage.
1998;
8
240-248
MissingFormLabel
- 21
Klarhofer van den M, Dilharreguy B, Gelderen G P. et al .
A PRESTO-SENSE sequence with alternating partial-Fourier encoding for rapid susceptibility-weighted
3D MRI time series.
Magn Reson Med.
2003;
50
830-838
MissingFormLabel
- 22
Golay van X, Zwart J A, Ho Y C. et al .
Parallel imaging techniques in functional MRI.
Top Magn Reson Imaging.
2004;
15
255-265
MissingFormLabel
- 23
Ravicz M E, Melcher J R, Kiang N Y.
Acoustic noise during functional magnetic resonance imaging.
J Acoust Soc Am.
2000;
108
1683-1696
MissingFormLabel
- 24
Moelker de A, Wielopolski P A, Pattynama P M.
Relationship between magnetic field strength and magnetic-resonance-related acoustic
noise levels.
MAGMA.
2003;
16
52-55
MissingFormLabel
- 25
Ruggero M A, Rich N C, Recio A.
The effect of intense acoustic stimulation on basilar-membrane vibrations.
Auditory Neuroscience.
1996;
2
329-345
MissingFormLabel
- 26
Chambers J, Akeroyd M A, Summerfield A Q. et al .
Active control of the volume acquisition noise in functional magnetic resonance imaging:
method and psychoacoustical evaluation.
J Acoust Soc Am.
2001;
110
3041-3054
MissingFormLabel
- 27
Edelstein W A, Kidane T K, Taracila V. et al .
Active-passive gradient shielding for MRI acoustic noise reduction.
Magn Reson Med.
2005;
53
1013-1017
MissingFormLabel
- 28
Scheef L, Daamen M, Fehse U. et al .
Combining SPARSE fMRI Designs with SENSE at High Field Strength. 4rd International Symposium on Highfield MR in Clinical Applications.
Fortschr Röntgenstr.
2006;
178
115-127
MissingFormLabel
- 29
Pruessmann K P, Weiger M, Scheidegger M B. et al .
SENSE: sensitivity encoding for fast MRI.
Magn Reson Med.
1999;
42
952-962
MissingFormLabel
- 30
Griswold M A, Jakob P M, Heidemann R M. et al .
Generalized autocalibrating partially parallel acquisitions (GRAPPA).
Magn Reson Med.
2002;
47
1202-1210
MissingFormLabel
- 31
Hermans E J, Neggers S F, Ramsey N F.
Ultra-fast three dimensional PRESTO-SENSE imaging with full brain coverage on a clinical
3T scanner. 12th Annual Meeting of Organization of Human Brain Mapping.
Neuroimage.
2006;
31
197
MissingFormLabel
- 32
Golay X, Pruessmann K P, Weiger M. et al .
PRESTO-SENSE: an ultrafast whole-brain fMRI technique.
Magn Reson Med.
2000;
43
779-786
MissingFormLabel
- 33
Yang Q X, Wang J, Smith M B. et al .
Reduction of magnetic field inhomogeneity artifacts in echo planar imaging with SENSE
and GESEPI at high field.
Magn Reson Med.
2004;
52
1418-1423
MissingFormLabel
- 34
Zwart J A, Gelderen de F, Golay X. et al .
Accelerated parallel imaging for functional imaging of the human brain.
NMR Biomed.
2006;
19
342-351
MissingFormLabel
- 35
Zwart van J A, Gelderen de P, Kellman P. et al .
Application of sensitivity-encoded echo-planar imaging for blood oxygen level-dependent
functional brain imaging.
Magn Reson Med.
2002;
48
1011-1020
MissingFormLabel
- 36
Preibisch C, Pilatus U, Bunke J. et al .
Functional MRI using sensitivity-encoded echo planar imaging (SENSE-EPI).
Neuroimage.
2003;
19
412-421
MissingFormLabel
- 37
Wiesinger F, Van de Moortele van P F, Adriany G. et al .
Potential and feasibility of parallel MRI at high field.
NMR Biomed.
2006;
19
368-378
MissingFormLabel
- 38
Ohliger M A, Grant A K, Sodickson D K.
Ultimate intrinsic signal-to-noise ratio for parallel MRI: electromagnetic field considerations.
Magn Reson Med.
2003;
50
1018-1030
MissingFormLabel
- 39
Oshio K, Feinberg D A.
GRASE (Gradient- and spin-echo) imaging: a novel fast MRI technique.
Magn Reson Med.
1991;
20
344-349
MissingFormLabel
- 40
Bandettini P A, Wong E C, Jesmanowicz A. et al .
Spin-echo and gradient-echo EPI of human brain activation using BOLD contrast: a comparative
study at 1.5 T.
NMR Biomed.
1994;
7
12-20
MissingFormLabel
- 41
Norris D G, Zysset S, Mildner T. et al .
An investigation of the value of spin-echo-based fMRI using a Stroop color-word matching
task and EPI at 3 T.
Neuroimage.
2002;
15
719-726
MissingFormLabel
- 42
Yacoub E, Van de Moortele P F, Shmuel A. et al .
Signal and noise characteristics of Hahn SE and GE BOLD fMRI at 7 T in humans.
Neuroimage.
2005;
24
738-750
MissingFormLabel
- 43
Harel N, Lin J, Moeller S. et al .
Combined imaging-histological study of cortical laminar specificity of fMRI signals.
Neuroimage.
2006;
29
879-887
MissingFormLabel
- 44
Hoenig K, Kuhl C K, Scheef L.
Functional 3.0-T MR assessment of higher cognitive function: are there advantages
over 1.5-T imaging?.
Radiology.
2005;
234
860-868
MissingFormLabel
- 45
Yang Y, Wen H, Mattay V S. et al .
Comparison of 3D BOLD functional MRI with spiral acquisition at 1.5 and 4.0 T.
Neuroimage.
1999;
9
446-451
MissingFormLabel
- 46
Fera F, Yongbi M N, Gelderen van P. et al .
EPI-BOLD fMRI of human motor cortex at 1.5 T and 3.0 T: sensitivity dependence on
echo time and acquisition bandwidth.
J Magn Reson Imaging.
2004;
19
19-26
MissingFormLabel
- 47
Beisteiner R, Windischberger C, Lanzenberger R. et al .
Finger somatotopy in human motor cortex.
Neuroimage.
2001;
13
1016-1026
MissingFormLabel
- 48
Maldjian J A, Gottschalk A, Patel R S. et al .
The sensory somatotopic map of the human hand demonstrated at 4 Tesla.
Neuroimage.
1999;
10
55-62
MissingFormLabel
- 49
Overduin S A, Servos P.
Distributed digit somatotopy in primary somatosensory cortex.
Neuroimage.
2004;
23
462-472
MissingFormLabel
- 50
Menon R S, Ogawa S, Strupp J P. et al .
Ocular dominance in human V1 demonstrated by functional magnetic resonance imaging.
J Neurophysiol.
1997;
77
2780-2787
MissingFormLabel
- 51
Zou K H, Greve D N, Wang M. et al .
Reproducibility of functional MR imaging: preliminary results of prospective multi-institutional
study performed by Biomedical Informatics Research Network.
Radiology.
2005;
237
781-789
MissingFormLabel
Dr. Lukas Scheef
Experimentelle Radiologie, Radiologische Klinik, Universitätsklinikum Bonn
Sigmund-Freud-Str. 25
53105 Bonn
Phone: ++49/2 28/28 71 58 70
Fax: ++49/2 28/28 71 60 93
Email: Lukas.Scheef@ukb.uni-bonn.de