Rofo 2007; 179(9): 925-931
DOI: 10.1055/s-2007-963195
Übersicht

© Georg Thieme Verlag KG Stuttgart · New York

Methodische Aspekte der funktionellen Neurobildgebung im MRT-Hochfeldbereich: eine kritische Übersicht

Methodological Aspects of Functional Neuroimaging at High Field Strength: a Critical ReviewL. Scheef1 , M. W. Landsberg1 , H. Boecker1
  • 1Experimentelle Radiologie, Radiologische Klinik, Universitätsklinikum Bonn
Further Information

Publication History

eingereicht: 16.10.2006

angenommen: 22.4.2007

Publication Date:
26 June 2007 (online)

Zusammenfassung

Die letzten Jahre haben eindrucksvoll bewiesen, dass die Hochfeld-Magnetresonanztomografie (MRT) in nahezu allen Belangen den konventionellen Geräten bis 1,5 Tesla (T) überlegen ist. Nachdem 3-T-Geräte ihren weltweiten Siegeszug durch Forschungseinrichtungen angetreten haben, ist eine neue Gerätegeneration mit Feldstärken von 7T und mehr in Sichtweite. Mit dem Sprung zu ultrahohen Feldern nähert sich die MRT-Technologie immer mehr den physikalischen Grenzen des Machbaren an und ein immer größerer finanzieller Aufwand muss betrieben werden, um dies zu erreichen. Im vorliegenden Artikel wird versucht, einen kritischen Überblick über die Vorteile, aber auch die inhärenten Probleme der funktionellen Bildgebung bei ultrahoher Feldstärke zu geben. Dabei beschränken wir uns hauptsächlich auf T2*-basierte, nichtkontrastmittelgestützte funktionelle Bildgebungstechniken. Dargestellt wird die Bedeutung der Hochfeldtechnologie im Hinblick auf SNR, CNR, Auflösung, Sequenzen sowie auf Artefakte, Lärmbelastung und SAR. Einen besonderen Stellenwert nimmt die Diskussion der parallelen Bildgebung ein, die voraussichtlich die Weiterentwicklung bei hohen und ultrahohen Feldstärken maßgeblich bestimmen wird. Abschließend wird versucht, anhand ausgewählter Publikationen die Bedeutung hoher Feldstärken für die funktionelle Neurobildgebung zu verdeutlichen.

Abstract

The last few years have proven that high field magnetic resonance imaging (MRI) is superior in nearly every way to conventional equipment up to 1.5 tesla (T). Following the global success of 3T-scanners in research institutes and medical practices, a new generation of MRI devices with field strengths of 7T and higher is now on the horizon. The introduction of ultra high fields has brought MRI technology closer to the physical limitations and increasingly greater costs are required to achieve this goal. This article provides a critical overview of the advantages and problems of functional neuroimaging using ultra high field strengths. This review is principally limited to T2*-based functional imaging techniques not dependent on contrast agents. The main issues include the significance of high field technology with respect to SNR, CNR, resolution, and sequences, as well as artifacts, noise exposure, and SAR. Of great relevance is the discussion of parallel imaging, which will presumably determine the further development of high and ultra high field strengths. Finally, the importance of high field strengths for functional neuroimaging is explained by selected publications.

Literatur

  • 1 Giesel F L, Wustenberg T, Bongers A. et al . MR-basierte Methoden der funktionellen Bildgebung des zentralen Nervensystems.  Fortschr Röntgenstr. 2005;  177 714-730
  • 2 Heiland S. MR-Methoden für funktionelle Untersuchungen des Gehirns. 86. Deutscher Röntgenkongress.  Fortschr Röntgenstr. 2005;  177 S 324
  • 3 Hoenig K, Schild H, Scheef L. Where context-based semantic inhibition functionally „matters”. 2nd. International Symposium „Highfield MR in Clinical Applications”.  Fortschr Röntgenstr. 2004;  176 433
  • 4 Scheef L, Neuloh G, Brockmöller T. et al . Rekonstruktion intraoperativer Elektroden-Grids zum direkten Vergleich funktioneller MR-Ergebnisse mit intraoperativer Stimulation. 85. Deutscher Röntgenkongress.  Fortschr Röntgenstr. 2004;  176 S 159
  • 5 Stippich C, Heiland S, Tronnier V. et al . Functional magnetic resonance imaging: Physiological background, technical aspects and prerequisites for clinical use.  Fortschr Röntgenstr. 2002;  174 43-49
  • 6 Prothmann S, Puccini S, Dalitz B. et al . Präoperatives Mapping der Sprachareale mittels funktioneller Magnetresonanztomographie (fMRT) bei Patienten mit Hirntumoren: Paradigmenvergleich.  Fortschr Röntgenstr. 2005;  177 1522-1531
  • 7 Schild H. Clinical highfield MR.  Fortschr Röntgenstr. 2005;  177 621-623
  • 8 Stanisz G J, Odrobina E E, Pun J. et al . T1, T2 relaxation and magnetization transfer in tissue at 3T.  Magn Reson Med. 2005;  54 507-512
  • 9 Triantafyllou C, Hoge R D, Krueger G. et al . Comparison of physiological noise at 1.5 T, 3 T and 7 T and optimization of fMRI acquisition parameters.  Neuroimage. 2005;  26 243-250
  • 10 Kruger G, Kastrup A, Glover G H. Neuroimaging at 1.5 T and 3.0 T: comparison of oxygenation-sensitive magnetic resonance imaging.  Magn Reson Med. 2001;  45 595-604
  • 11 Ogawa S, Lee T M, Kay A R. et al . Brain magnetic resonance imaging with contrast dependent on blood oxygenation.  Proc Natl Acad Sci U S A. 1990;  87 9868-9872
  • 12 Turner R, Jezzard P, Wen H. et al . Functional mapping of the human visual cortex at 4 and 1.5 tesla using deoxygenation contrast EPI.  Magn Reson Med. 1993;  29 277-279
  • 13 Gati J S, Menon R S, Ugurbil K. et al . Experimental determination of the BOLD field strength dependence in vessels and tissue.  Magn Reson Med. 1997;  38 296-302
  • 14 Krasnow B, Tamm L, Greicius M D. et al . Comparison of fMRI activation at 3 and 1.5 T during perceptual, cognitive, and affective processing.  Neuroimage. 2003;  18 813-826
  • 15 Schmidt C F, Boesiger P, Ishai A. Comparison of fMRI activation as measured with gradient- and spin-echo EPI during visual perception.  Neuroimage. 2005;  26 852-859
  • 16 Glover G H, Law C S. Spiral-in/out BOLD fMRI for increased SNR and reduced susceptibility artifacts.  Magn Reson Med. 2001;  46 515-522
  • 17 Glover G H, Lai S. Self-navigated spiral fMRI: interleaved versus single-shot.  Magn Reson Med. 1998;  39 361-368
  • 18 Lu H, Mazaheri Y, Zhang R. et al . Multishot partial-k-space EPI for high-resolution fMRI demonstrated in a rat whisker barrel stimulation model at 3T.  Magn Reson Med. 2003;  50 1215-1222
  • 19 Liu G, Sobering G, Duyn J. et al . A functional MRI technique combining principles of echo-shifting with a train of observations (PRESTO).  Magn Reson Med. 1993;  30 764-768
  • 20 Ramsey N F, Brink J S, Muiswinkel van A M. et al . Phase navigator correction in 3D fMRI improves detection of brain activation: quantitative assessment with a graded motor activation procedure.  Neuroimage. 1998;  8 240-248
  • 21 Klarhofer van den M, Dilharreguy B, Gelderen G P. et al . A PRESTO-SENSE sequence with alternating partial-Fourier encoding for rapid susceptibility-weighted 3D MRI time series.  Magn Reson Med. 2003;  50 830-838
  • 22 Golay van X, Zwart J A, Ho Y C. et al . Parallel imaging techniques in functional MRI.  Top Magn Reson Imaging. 2004;  15 255-265
  • 23 Ravicz M E, Melcher J R, Kiang N Y. Acoustic noise during functional magnetic resonance imaging.  J Acoust Soc Am. 2000;  108 1683-1696
  • 24 Moelker de A, Wielopolski P A, Pattynama P M. Relationship between magnetic field strength and magnetic-resonance-related acoustic noise levels.  MAGMA. 2003;  16 52-55
  • 25 Ruggero M A, Rich N C, Recio A. The effect of intense acoustic stimulation on basilar-membrane vibrations.  Auditory Neuroscience. 1996;  2 329-345
  • 26 Chambers J, Akeroyd M A, Summerfield A Q. et al . Active control of the volume acquisition noise in functional magnetic resonance imaging: method and psychoacoustical evaluation.  J Acoust Soc Am. 2001;  110 3041-3054
  • 27 Edelstein W A, Kidane T K, Taracila V. et al . Active-passive gradient shielding for MRI acoustic noise reduction.  Magn Reson Med. 2005;  53 1013-1017
  • 28 Scheef L, Daamen M, Fehse U. et al . Combining SPARSE fMRI Designs with SENSE at High Field Strength. 4rd International Symposium on Highfield MR in Clinical Applications.  Fortschr Röntgenstr. 2006;  178 115-127
  • 29 Pruessmann K P, Weiger M, Scheidegger M B. et al . SENSE: sensitivity encoding for fast MRI.  Magn Reson Med. 1999;  42 952-962
  • 30 Griswold M A, Jakob P M, Heidemann R M. et al . Generalized autocalibrating partially parallel acquisitions (GRAPPA).  Magn Reson Med. 2002;  47 1202-1210
  • 31 Hermans E J, Neggers S F, Ramsey N F. Ultra-fast three dimensional PRESTO-SENSE imaging with full brain coverage on a clinical 3T scanner. 12th Annual Meeting of Organization of Human Brain Mapping.  Neuroimage. 2006;  31 197
  • 32 Golay X, Pruessmann K P, Weiger M. et al . PRESTO-SENSE: an ultrafast whole-brain fMRI technique.  Magn Reson Med. 2000;  43 779-786
  • 33 Yang Q X, Wang J, Smith M B. et al . Reduction of magnetic field inhomogeneity artifacts in echo planar imaging with SENSE and GESEPI at high field.  Magn Reson Med. 2004;  52 1418-1423
  • 34 Zwart J A, Gelderen de F, Golay X. et al . Accelerated parallel imaging for functional imaging of the human brain.  NMR Biomed. 2006;  19 342-351
  • 35 Zwart van J A, Gelderen de P, Kellman P. et al . Application of sensitivity-encoded echo-planar imaging for blood oxygen level-dependent functional brain imaging.  Magn Reson Med. 2002;  48 1011-1020
  • 36 Preibisch C, Pilatus U, Bunke J. et al . Functional MRI using sensitivity-encoded echo planar imaging (SENSE-EPI).  Neuroimage. 2003;  19 412-421
  • 37 Wiesinger F, Van de Moortele van P F, Adriany G. et al . Potential and feasibility of parallel MRI at high field.  NMR Biomed. 2006;  19 368-378
  • 38 Ohliger M A, Grant A K, Sodickson D K. Ultimate intrinsic signal-to-noise ratio for parallel MRI: electromagnetic field considerations.  Magn Reson Med. 2003;  50 1018-1030
  • 39 Oshio K, Feinberg D A. GRASE (Gradient- and spin-echo) imaging: a novel fast MRI technique.  Magn Reson Med. 1991;  20 344-349
  • 40 Bandettini P A, Wong E C, Jesmanowicz A. et al . Spin-echo and gradient-echo EPI of human brain activation using BOLD contrast: a comparative study at 1.5 T.  NMR Biomed. 1994;  7 12-20
  • 41 Norris D G, Zysset S, Mildner T. et al . An investigation of the value of spin-echo-based fMRI using a Stroop color-word matching task and EPI at 3 T.  Neuroimage. 2002;  15 719-726
  • 42 Yacoub E, Van de Moortele P F, Shmuel A. et al . Signal and noise characteristics of Hahn SE and GE BOLD fMRI at 7 T in humans.  Neuroimage. 2005;  24 738-750
  • 43 Harel N, Lin J, Moeller S. et al . Combined imaging-histological study of cortical laminar specificity of fMRI signals.  Neuroimage. 2006;  29 879-887
  • 44 Hoenig K, Kuhl C K, Scheef L. Functional 3.0-T MR assessment of higher cognitive function: are there advantages over 1.5-T imaging?.  Radiology. 2005;  234 860-868
  • 45 Yang Y, Wen H, Mattay V S. et al . Comparison of 3D BOLD functional MRI with spiral acquisition at 1.5 and 4.0 T.  Neuroimage. 1999;  9 446-451
  • 46 Fera F, Yongbi M N, Gelderen van P. et al . EPI-BOLD fMRI of human motor cortex at 1.5 T and 3.0 T: sensitivity dependence on echo time and acquisition bandwidth.  J Magn Reson Imaging. 2004;  19 19-26
  • 47 Beisteiner R, Windischberger C, Lanzenberger R. et al . Finger somatotopy in human motor cortex.  Neuroimage. 2001;  13 1016-1026
  • 48 Maldjian J A, Gottschalk A, Patel R S. et al . The sensory somatotopic map of the human hand demonstrated at 4 Tesla.  Neuroimage. 1999;  10 55-62
  • 49 Overduin S A, Servos P. Distributed digit somatotopy in primary somatosensory cortex.  Neuroimage. 2004;  23 462-472
  • 50 Menon R S, Ogawa S, Strupp J P. et al . Ocular dominance in human V1 demonstrated by functional magnetic resonance imaging.  J Neurophysiol. 1997;  77 2780-2787
  • 51 Zou K H, Greve D N, Wang M. et al . Reproducibility of functional MR imaging: preliminary results of prospective multi-institutional study performed by Biomedical Informatics Research Network.  Radiology. 2005;  237 781-789

Dr. Lukas Scheef

Experimentelle Radiologie, Radiologische Klinik, Universitätsklinikum Bonn

Sigmund-Freud-Str. 25

53105 Bonn

Phone: ++49/2 28/28 71 58 70

Fax: ++49/2 28/28 71 60 93

Email: Lukas.Scheef@ukb.uni-bonn.de

    >