Physikalische Medizin, Rehabilitationsmedizin, Kurortmedizin 2007; 17(1): 12-19
DOI: 10.1055/s-2007-958633
Übersicht

© Georg Thieme Verlag KG Stuttgart · New York

Gentherapie für traumatische Defekte des Gelenkknorpels

Gene Therapy of Articular Cartilage defectsH. Madry 1 , P. Wilmes 1 , D. Kohn 1 , M. Cucchiarini 1
  • 1Labor für Experimentelle Orthopädie, Klinik für Orthopädie und Orthopädische Chirurgie, Universitütsklinikum des Saarlandes, Homburg
Further Information

Publication History

eingegangen: 12. Juli 2006

angenommen: 21. September 2006

Publication Date:
09 March 2007 (online)

Zusammenfassung

Traumatische fokale Defekte des hyalinen Gelenkknorpels stellen ein ungelöstes Problem in der klinischen Orthopädie dar. Keine der derzeit verwendeten Therapien führt zu einer kompletten und dauerhaften Knorpelregeneration. Obwohl das Konzept einer Gentherapie für Knorpelschäden elegant erscheint, zeigt die gegenwärtige Forschung, dass die verwendeten Gentransfertechniken an das Problem eines umschriebenen Knorpeldefektes angepasst werden müssen. Insbesondere eine örtlich begrenzte Übertragung der therapeutischen Genkonstrukte in den Defekt ist wünschenswert. Gegenwärtige Strategien sind bestrebt, Signalwege der Knorpelheilung im Defekt zu modulieren. Sie umfassen entweder die Anregung der Zellproliferation, -reifung und der Matrixsynthese über einen direkten Transfer oder durch die Methode der Zelltransplantation. Unter den meistuntersuchten Kandidaten sind es die Polypeptidwachstumfaktoren, die die strukturelle Qualität des Reparaturgewebes verbessert haben. Erst ein besseres Verständnis der grundlegenden wissenschaftlichen Aspekte der Knorpeldefektreparatur, zusammen mit der Identifizierung von zusätzlichen molekularen Zielen und der Entwicklung von verbesserten Gentransfertechniken, kann eine klinische Anwendung der Gentherapie für Knorpeldefekte erlauben. Die ersten experimentellen Ergebnisse geben Anlass zu vorsichtigem Optimismus.

Abstract

Recent advances in gene transfer technology have provided novel tools for its therapeutic use in the regeneration of focal articular cartilage defects. Current strategies aiming at improving chondrogenic pathways in the new repair tissue that fills such defects include the stimulation of chondrocyte proliferation and maturation as well as the stimulation of matrix synthesis via direct or ex vivo approaches. To target gene vectors to cartilage defects, a localized intraarticular delivery into the defect of therapeutic gene constructs is necessary. This review outlines the basic scientific aspects of cartilage defect repair, defines the regenerative options that might be applied, summarizes the progress that has been made to date, and analyses some of the unique obstacles that need to be resolved before a clinical translation of gene therapy for cartilage defects may be considered.

Literatur

  • 1 Adachi N, Sato K, Usas A, Fu FH, Ochi M, Han CW, Niyibizi C, Huard J. Muscle derived, cell based ex vivo gene therapy for treatment of full thickness articular cartilage defects.  J Rheumatol. 2002;  29 ((9)) 1920-1930
  • 2 Amizuka N, Warshawsky H, Henderson JE, Goltzman D, Karaplis AC. Parathyroid hormone-related peptide-depleted mice show abnormal epiphyseal cartilage development and altered endochondral bone formation.  J Cell Biol. 1994;  126 ((6)) 1611-1623
  • 3 Asahina I, Sampath TK, Hauschka PV. Human osteogenic protein-1 induces chondroblastic, osteoblastic, and/or adipocytic differentiation of clonal murine target cells.  Exp Cell Res. 1996;  222 ((1)) 38-47
  • 4 Baragi VM, Renkiewicz RR, Qiu L, Brammer D, Riley JM, Sigler RE, Frenkel SR, Amin A, Abramson SB, Roessler BJ. Transplantation of adenovirally transduced allogeneic chondrocytes into articular cartilage defects in vivo.  Osteoarthritis Cartilage. 1997;  5 ((4)) 275-282
  • 5 Bi W, Deng JM, Zhang Z, Behringer RR, de Crombrugghe B. Sox9 is required for cartilage formation.  Nat Genet. 1999;  22 ((1)) 85-89
  • 6 Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation.  N Engl J Med. 1994;  331 ((14)) 889-895
  • 7 Buckwalter JA, Mankin HJ. Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation.  Instr Course Lect. 1998;  47 487-504
  • 8 Cucchiarini M, Madry H. Gene therapy for cartilage defects.  J Gene Med. 2005;  7 ((12)) 1495-1509
  • 9 Cucchiarini M, Madry H, Ma C, Thurn T, Zurakowski D, Menger MD, Kohn D, Trippel SB, Terwilliger EF. Improved tissue repair in articular cartilage defects in vivo by rAAV-mediated overexpression of human fibroblast growth factor 2.  Mol Ther. 2005;  12 ((2)) 229-238
  • 10 Czitrom AA, Langer F, McKee N, Gross AE. Bone and cartilage allotransplantation. A review of 14 years of research and clinical studies.  Clin Orthop. 1986;  ((208)) 141-145
  • 11 Erlacher L, Ng CK, Ullrich R, Krieger S, Luyten FP. Presence of cartilage-derived morphogenetic proteins in articular cartilage and enhancement of matrix replacement in vitro.  Arthritis Rheum. 1998;  41 ((2)) 263-273
  • 12 Evans CH, Robbins PD, Ghivizzani SC, Herndon JH, Kang R, Bahnson AB, Barranger JA, Elders EM, Gay S, Tomaino MM, Wasko MC, Watkins SC, Whiteside TL, Glorioso JC, Lotze MT, Wright TM. Clinical trial to assess the safety, feasibility, and efficacy of transferring a potentially anti-arthritic cytokine gene to human joints with rheumatoid arthritis.  Hum Gene Ther. 1996;  7 ((10)) 1261-1280
  • 13 Gelse K, Jiang QJ, Aigner T, Ritter T, Wagner K, Poschl E, von der Mark K, Schneider H. Fibroblast-mediated delivery of growth factor complementary DNA into mouse joints induces chondrogenesis but avoids the disadvantages of direct viral gene transfer.  Arthritis Rheum. 2001;  44 ((8)) 1943-1953
  • 14 Gelse K, von der Mark K, Aigner T, Park J, Schneider H. Articular cartilage repair by gene therapy using growth factor-producing mesenchymal cells.  Arthritis Rheum. 2003;  48 ((2)) 430-441
  • 15 Ghivizzani SC, Lechman ER, Tio C, Mule KM, Chada S, McCormack JE, Evans CH, Robbins PD. Direct retrovirus-mediated gene transfer to the synovium of the rabbit knee: implications for arthritis gene therapy.  Gene Ther. 1997;  4 ((9)) 977-982
  • 16 Gies T. Ueber Heilung von Knorpelwunden.  Deutsche Zeitschrift für Chirurgie. 1883;  18 8-34
  • 17 Goomer RS, Deftos LJ, Terkeltaub R, Maris T, Lee MC, Harwood FL, Amiel D. High-efficiency non-viral transfection of primary chondrocytes and perichondrial cells for ex-vivo gene therapy to repair articular cartilage defects.  Osteoarthritis Cartilage. 2001;  9 ((3)) 248-256
  • 18 Gouze E, Pawliuk R, Pilapil C, Gouze JN, Fleet C, Palmer GD, Evans CH, Leboulch P, Ghivizzani SC. In vivo gene delivery to synovium by lentiviral vectors.  Mol Ther. 2002;  5 ((4)) 397-404
  • 19 Grande DA, Mason J, Light E, Dines D. Stem cells as platforms for delivery of genes to enhance cartilage repair.  J Bone Joint Surg Am. 2003;  85-A ((Suppl 2)) 111-116
  • 20 Hidaka C, Goodrich LR, Chen CT, Warren RF, Crystal RG, Nixon AJ. Acceleration of cartilage repair by genetically modified chondrocytes over expressing bone morphogenetic protein-7.  J Orthop Res. 2003;  21 ((4)) 573-583
  • 21 Hirschmann F, Verhoeyen E, Wirth D, Bauwens S, Hauser H, Rudert M. Vital marking of articular chondrocytes by retroviral infection using green fluorescence protein.  Osteoarthritis Cartilage. 2002;  10 ((2)) 109-118
  • 22 Hotten GC, Matsumoto T, Kimura M, Bechtold RF, Kron R, Ohara T, Tanaka H, Satoh Y, Okazaki M, Shirai T, Pan H, Kawai S, Pohl JS, Kudo A. Recombinant human growth/differentiation factor 5 stimulates mesenchyme aggregation and chondrogenesis responsible for the skeletal development of limbs.  Growth Factors. 1996;  13 ((1-2)) 65-74
  • 23 Hunziker EB, Michel M, Studer D. Ultrastructure of adult human articular cartilage matrix after cryotechnical processing.  Microsc Res Tech. 1997;  37 ((4)) 271-284
  • 24 Ikeda T, Kubo T, Arai Y, Nakanishi T, Kobayashi K, Takahashi K, Imanishi J, Takigawa M, Hirasawa Y. Adenovirus mediated gene delivery to the joints of guinea pigs.  J Rheumatol. 1998;  25 ((9)) 1666-1673
  • 25 Ikeda T, Kubo T, Nakanishi T, Arai Y, Kobayashi K, Mazda O, Ohashi S, Takahashi K, Imanishi J, Takigawa M, Hirasawa Y. Ex vivo gene delivery using an adenovirus vector in treatment for cartilage defects.  J Rheumatol. 2000;  27 ((4)) 990-996
  • 26 Jentzsch KD, Wellmitz G, Heder G, Petzold E, Buntrock P, Oehme P. A bovine brain fraction with fibroblast growth factor activity inducing articular cartilage regeneration in vivo.  Acta Biol Med Ger. 1980;  39 ((8-9)) 967-971
  • 27 Kang R, Marui T, Ghivizzani SC, Nita IM, Georgescu HI, Suh JK, Robbins PD, Evans CH. Ex vivo gene transfer to chondrocytes in full-thickness articular cartilage defects: a feasibility study.  Osteoarthritis Cartilage. 1997;  5 ((2)) 139-143
  • 28 Katayama R, Wakitani S, Tsumaki N, Morita Y, Matsushita I, Gejo R, Kimura T. Repair of articular cartilage defects in rabbits using CDMP1 gene-transfected autologous mesenchymal cells derived from bone marrow.  Rheumatology (Oxford). 2004;  43 ((8)) 980-985
  • 29 Kaul G, Cucchiarini M, Arntzen D, Zurakowski D, Menger MD, Kohn D, Trippel SB, Madry H. Local stimulation of articular cartilage repair by transplantation of encapsulated chondrocytes overexpressing human fibroblast growth factor 2 (FGF-2) in vivo.  J Gene Med. 2006;  8 ((1)) 100-111
  • 30 Knutsen G, Engebretsen L, Ludvigsen TC, Drogset JO, Grontvedt T, Solheim E, Strand T, Roberts S, Isaksen V, Johansen O. Autologous chondrocyte implantation compared with microfracture in the knee. A randomized trial.  J Bone Joint Surg Am. 2004;  86-A ((3)) 455-464
  • 31 Kobayashi N, Koshino T, Uesugi M, Yokoo N, Xin KQ, Okuda K, Mizukami H, Ozawa K, Saito T. Gene marking in adeno-associated virus vector infected periosteum derived cells for cartilage repair.  J Rheumatol. 2002;  29 ((10)) 2176-2180
  • 32 Lo YY, Cruz TF. Involvement of reactive oxygen species in cytokine and growth factor induction of c-fos expression in chondrocytes.  J Biol Chem. 1995;  270 ((20)) 11727-11730
  • 33 Madry H, Cucchiarini M, Stein U, Remberger K, Menger MD, Kohn D, Trippel SB. Sustained transgene expression in cartilage defects in vivo after transplantation of articular chondrocytes modified by lipid-mediated gene transfer in a gel suspension delivery system.  J Gene Med. 2003;  5 ((6)) 502-509
  • 34 Madry H, Cucchiarini M, Terwilliger EF, Trippel SB. Efficient and persistent gene transfer into articular cartilage using recombinant adeno-associated virus vectors in vitro and in vivo.  Human Gene Ther. 2003;  14 ((4)) 393-402
  • 35 Madry H, Kaul G, Cucchiarini M, Stein U, Zurakowski D, Remberger K, Menger MD, Kohn D, Trippel SB. Enhanced repair of articular cartilage defects in vivo by transplanted chondrocytes overexpressing insulin-like growth factor I (IGF-I).  Gene Ther. 2005;  12 ((14)) 1171-1179
  • 36 Mason JM, Breitbart AS, Barcia M, Porti D, Pergolizzi RG, Grande DA. Cartilage and bone regeneration using gene-enhanced tissue engineering.  Clin Orthop. 2000;  ((379 Suppl)) 171-178
  • 37 Mason JM, Grande DA, Barcia M, Grant R, Pergolizzi RG, Breitbart AS. Expression of human bone morphogenic protein 7 in primary rabbit periosteal cells: potential utility in gene therapy for osteochondral repair.  Gene Ther. 1998;  5 ((8)) 1098-1104
  • 38 Mi Z, Ghivizzani SC, Lechman E, Glorioso JC, Evans CH, Robbins PD. Adverse effects of adenovirus-mediated gene transfer of human transforming growth factor beta 1 into rabbit knees.  Arthritis Res Ther. 2003;  5 ((3)) 132-139
  • 39 Mi Z, Ghivizzani SC, Lechman ER, Jaffurs D, Glorioso JC, Evans CH, Robbins PD. Adenovirus-mediated gene transfer of insulin-like growth factor 1 stimulates proteoglycan synthesis in rabbit joints.  Arthritis Rheum. 2000;  43 ((11)) 2563-2570
  • 40 Mierisch CM, Wilson HA, Turner MA, Milbrandt TA, Berthoux L, Hammarskjold ML, Rekosh D, Balian G, Diduch DR. Chondrocyte transplantation into articular cartilage defects with use of calcium alginate: the fate of the cells.  J Bone Joint Surg Am. 2003;  85-A ((9)) 1757-1767
  • 41 Nita I, Ghivizzani SC, Galea-Lauri J, Bandara G, Georgescu HI, Robbins PD, Evans CH. Direct gene delivery to synovium. An evaluation of potential vectors in vitro and in vivo.  Arthritis Rheum. 1996;  39 ((5)) 820-828
  • 42 Noyes FR, Stabler CL. A system for grading articular cartilage lesions at arthroscopy.  Am J Sports Med. 1989;  17 ((4)) 505-513
  • 43 Ochi M, Uchio Y, Kawasaki K, Wakitani S, Iwasa J. Transplantation of cartilage-like tissue made by tissue engineering in the treatment of cartilage defects of the knee.  J Bone Joint Surg Br. 2002;  84 ((4)) 571-578
  • 44 O'Driscoll SW. The healing and regeneration of articular cartilage.  J Bone Joint Surg Am. 1998;  80 ((12)) 1795-1712
  • 45 O'Driscoll SW, Salter RB. The induction of neochondrogenesis in free intra-articular periosteal autografts under the influence of continuous passive motion. An experimental investigation in the rabbit.  J Bone Joint Surg [Am]. 1984;  66 ((8)) 1248-1257
  • 46 Pan RY, Xiao X, Chen SL, Li J, Lin LC, Wang HJ, Tsao YP. Disease-inducible transgene expression from a recombinant adeno-associated virus vector in a rat arthritis model.  J Virol. 1999;  73 ((4)) 3410-3417
  • 47 Pascher A, Palmer GD, Steinert A, Oligino T, Gouze E, Gouze JN, Betz O, Spector M, Robbins PD, Evans CH, Ghivizzani SC. Gene delivery to cartilage defects using coagulated bone marrow aspirate.  Gene Ther. 2004;  11 ((2)) 133-141
  • 48 Perka C, Schultz O, Spitzer RS, Lindenhayn K. The influence of transforming growth factor beta1 on mesenchymal cell repair of full-thickness cartilage defects.  J Biomed Mater Res. 2000;  52 ((3)) 543-552
  • 49 Rahfoth B, Weisser J, Sternkopf F, Aigner T, von der Mark K, Brauer R. Transplantation of allograft chondrocytes embedded in agarose gel into cartilage defects of rabbits.  Osteoarthritis Cartilage. 1998;  6 ((1)) 50-65
  • 50 Roessler BJ, Allen ED, Wilson JM, Hartman JW, Davidson BL. Adenoviral-mediated gene transfer to rabbit synovium in vivo.  J Clin Invest. 1993;  92 ((2)) 1085-1092
  • 51 Rogachefsky RA, Dean DD, Howell DS, Altman RD. Treatment of canine osteoarthritis with insulin-like growth factor-1 (IGF-1) and sodium pentosan polysulfate.  Osteoarthritis Cartilage. 1993;  1 ((2)) 105-114
  • 52 Salter RB. The biologic concept of continuous passive motion of synovial joints. The first 18 years of basic research and its clinical application.  Clin Orthop. 1989;  ((242)) 12-25
  • 53 Schaefer D, Martin I, Jundt G, Seidel J, Heberer M, Grodzinsky A, Bergin I, Vunjak-Novakovic G, Freed LE. Tissue-engineered composites for the repair of large osteochondral defects.  Arthritis Rheum. 2002;  46 ((9)) 2524-2534
  • 54 Seggel R. Experimentelle Beiträge zur Anatomie und Pathologie des Gelenkknorpels. Studien über Knorpelwunden und Defekte.  Deutsche Zeitschrift für Chirurgie. 1904;  21 453-466
  • 55 Sellers RS, Peluso D, Morris EA. The effect of recombinant human bone morphogenetic protein-2 (rhBMP-2) on the healing of full-thickness defects of articular cartilage.  J Bone Joint Surg Am. 1997;  79 ((10)) 1452-1463
  • 56 Sellers RS, Zhang R, Glasson SS, Kim HD, Peluso D, D'Augusta DA, Beckwith K, Morris EA. Repair of articular cartilage defects one year after treatment with recombinant human bone morphogenetic protein-2 (rhBMP-2).  J Bone Joint Surg Am. 2000;  82 ((2)) 151-160
  • 57 Shida J, Jingushi S, Izumi T, Iwaki A, Sugioka Y. Basic fibroblast growth factor stimulates articular cartilage enlargement in young rats in vivo.  J Orthop Res. 1996;  14 ((2)) 265-272
  • 58 Soon-Shiong P, Heintz RE, Merideth N, Yao QX, Yao Z, Zheng T, Murphy M, Moloney MK, Schmehl M, Harris M. et al . Insulin independence in a type 1 diabetic patient after encapsulated islet transplantation.  Lancet. 1994;  343 ((8903)) 950-951
  • 59 Trippel SB. Growth factor actions on articular cartilage.  J Rheumatol. 1995;  ((Suppl 43)) 129-132
  • 60 Trippel SB. Growth factors as therapeutic agents.  Instr Course Lect. 1997;  46 473-476
  • 61 Trippel SB, Van Wyk JJ, Foster MB, Svoboda ME. Characterization of a specific somatomedin-c receptor on isolated bovine growth plate chondrocytes.  Endocrinology. 1983;  112 ((6)) 2128-2136
  • 62 Trippel SB, Wroblewski J, Makower AM, Whelan MC, Schoenfeld D, Doctrow SR. Regulation of growth-plate chondrocytes by insulin-like growth-factor I and basic fibroblast growth factor.  J Bone Joint Surg Am. 1993;  75 ((2)) 177-189
  • 63 Ueblacker P, Wagner B, Kruger A, Vogt S, DeSantis G, Kennerknecht E, Brill T, Hillemanns M, Salzmann GM, Imhoff AB, Plank C, Gansbacher B, Martinek V. Inducible nonviral gene expression in the treatment of osteochondral defects.  Osteoarthritis Cartilage. 2004;  12 ((9)) 711-719
  • 64 Ulrich-Vinther M, Duch MR, Soballe K, O'Keefe RJ, Schwarz EM, Pedersen FS. In vivo gene delivery to articular chondrocytes mediated by an adeno-associated virus vector.  J Orthop Res. 2004;  22 ((4)) 726-734
  • 65 Wakitani S, Kimura T, Hirooka A, Ochi T, Yoneda M, Yasui N, Owaki H, Ono K. Repair of rabbit articular surfaces with allograft chondrocytes embedded in collagen gel.  J Bone Joint Surg [Br]. 1989;  71 ((1)) 74-80
  • 66 Yokoo N, Saito T, Uesugi M, Kobayashi N, Xin KQ, Okuda K, Mizukami H, Ozawa K, Koshino T. Repair of articular cartilage defect by autologous transplantation of basic fibroblast growth factor gene-transduced chondrocytes with adeno-associated virus vector.  Arthritis Rheum. 2005;  52 ((1)) 164-170

Korrespondenzadresse

Priv.-Doz. Dr. H. Madry

Labor für Experimentelle Orthopädie

Klinik für Orthopädie und orthopädische Chirurgie

Universitätsklinkum des Saarlandes

66421 Homburg/Saar

Deutschland

Email: hmad@hotmail.com

    >