Horm Metab Res 2008; 40(1): 29-37
DOI: 10.1055/s-2007-1004542
Original Basic

© Georg Thieme Verlag KG Stuttgart · New York

A Cell-based High-throughput Assay System Reveals Modulation of Oxidative and Nonoxidative Glucose Metabolism due to Commonly Used Organic Solvents

S. Zimmermann 1 [*] , K. Zarse 1 [*] , T. J. Schulz 1 , 2 , K. Siems 3 , L. Müller-Kuhrt 3 , M. Birringer 1 , M. Ristow 1 , 2
  • 1Department of Human Nutrition, Institute of Nutrition, University of Jena, Jena, Germany
  • 2German Institute of Human Nutrition, Potsdam-Rehbrücke, Germany
  • 3AnalytiCon Discovery GmbH, Potsdam-Hermannswerder, Germany
Further Information

Publication History

received 06.02.2007

accepted 18.06.2007

Publication Date:
15 January 2008 (online)

Abstract

A 96-well format screening system was generated to quantify changes in nonoxidative glucose metabolism and oxidative pyruvate metabolism. D-Glucose uptake from the supernatant media was quantified by the glucose oxidase method, and l-lactate production of cells was quantified by the lactate dehydrogenase method applied on supernatant media. Mitochondrial membrane potential was quantified using tetramethylrhodamine methyl ester (TMRM) fluorescence, and reactive oxygen species (ROS) formation was determined by quantification of dihydrodichlorofluorescein fluorescence. Adenosine triphosphate (ATP) content of myocytes was determined using the luciferin reaction, and cellular respiration was quantified using commercially available, precoated microtiter plates. These six assays were used to determine the putative influence of organic solvents, namely dimethyl sulfoxide (DMSO), ethanol, methanol, and N-methylpyrrolidone (NMP) at concentrations of 0.01, 0.1, 1.0, and 5.0% (vol/vol), respectively, on glucose and pyruvate metabolism after 4 and 24 hours. In summary, all solvents induced significant changes in regard to one or several of the parameters evaluated, affecting cellular glucose uptake, glycolysis, mitochondrial metabolism, or oxidative phosphorylation. Accordingly, this comprehensive HTS evaluation should enable researchers to choose specific organic solvents on a rational basis to avoid nonspecific effects in cultured cells and tissue culture based experimental setups.

References

  • 1 Ristow M. Oxidative Metabolism in cancer growth.  Curr Opin Clin Nutr Metabol. 2006;  9 339-345
  • 2 Manfredi G, Beal MF. The role of mitochondria in the pathogenesis of neurodegenerative diseases.  Brain Pathol. 2000;  10 462-472
  • 3 Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes.  N Engl J Med. 2004;  350 664-671
  • 4 Ristow M. Neurodegenerative disorders associated with diabetes mellitus.  J Mol Med. 2004;  82 510-529
  • 5 Bordone L, Guarente L. Calorie restriction, SIRT1 and metabolism: understanding longevity.  Nat Rev Mol Cell Biol. 2005;  6 298-305
  • 6 Hare MF, Atchison WD. Differentiation between alterations in plasma and mitochondrial membrane potentials in synaptosomes using a carbocyanine dye.  J Neurochem. 1992;  58 1321-1329
  • 7 Velasco A, Duenas-Laita A, Molina A. Effects of dimethyl sulfoxide on the oxidative metabolism of certain tissues in rats in vitro.  Methods Find Exp Clin Pharmacol. 1991;  13 471-474
  • 8 Blachley JD, Johnson JH, Knochel JP. The harmful effects of ethanol on ion transport and cellular respiration.  Am J Med Sci. 1985;  289 22-26
  • 9 Klip A, Logan WJ, Li G. Hexose transport in L6 muscle cells. Kinetic properties and the number of [3H]cytochalasin B binding sites.  Biochim Biophys Acta. 1982;  687 265-280
  • 10 Bates SH, Gardiner JV, Jones RB, Bloom SR, Bailey CJ. Acute stimulation of glucose uptake by leptin in L6 muscle cells.  Horm Metab Res. 2002;  34 111-115
  • 11 Levin P A, Bistritzer T, Hanukoglu L, Max SR, Roeder LM. ACTH1-24 stimulates muscle cell glucose uptake.  Horm Metab Res. 1990;  22 608-611
  • 12 Nakashima N, Haji M, Umeda F, Nawata H. Effect of dehydroepiandrosterone on glucose uptake in cultured rat myoblasts.  Horm Metab Res. 1995;  27 491-494
  • 13 Kubo Y. Comparison of initial stages of muscle differentiation in rat and mouse myoblastic and mouse mesodermal stem cell lines.  J Physiol. 1991;  442 743-759
  • 14 Bergmeyer HU, Bernt E. Methods of enzymatic analysis. Academic Press, New York 1974
  • 15 Bergmeyer HU. Methods of enzymatic analysis. Weinheim. Verlag Chemie 1984
  • 16 Scaduto  Jr  RC, Grotyohann LW. Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives.  Biophys J. 1999;  76 469-477
  • 17 Wang H, Joseph JA. Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader.  Free Radic Biol Med. 1999;  27 612-616
  • 18 Xu W, MacDonough  3rd  RC, Langsdorf B, Demas JN, DeGraff BA. Oxygen sensors based on luminescence quenching: interactions of metal complexes with the polymer supports.  Anal Chem. 1994;  66 4133-4141
  • 19 Stern O, Volmer M. ber die Abklingungszeit der Fluoreszenz.  Physik Z. 1919;  20 183-189
  • 20 Mamchaoui K, Saumon G. A method for measuring the oxygen consumption of intact cell monolayers.  Am J Physiol Lung Cell Mol Physiol. 2000;  278 L858-L863
  • 21 Schultz V, Sussman I, Bokvist K, Tornheim K. Bioluminometric assay of ADP and ATP at high ATP/ADP ratios: assay of ADP after enzymatic removal of ATP.  Anal Biochem. 1993;  215 302-304
  • 22 Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.  Anal Biochem. 1976;  72 248-254
  • 23 Parker AJ. Advances in organic chemistry, methods and results. New York: Wiley-Interscience 1965
  • 24 Yoon MY, Kim SJ, Lee BH, Chung JH, Kim YC. Effects of dimethyl sulfoxide on metabolism and toxicity of acetaminophen in mice.  Biol Pharm Bull. 2006;  29 1618-1624
  • 25 Levenson R, Macara IG, Smith RL, Cantley L, Housman D. Role of mitochondrial membrane potential in the regulation of murine erythroleukemia cell differentiation.  Cell. 1982;  28 855-863
  • 26 Parker NB, Berger EM, Curtis WE, Muldrow ME, Linas SL, Repine JE. Hydrogen peroxide causes dimethylthiourea consumption while hydroxyl radical causes dimethyl sulfoxide consumption in vitro.  J Free Radic Biol Med. 1985;  1 415-419
  • 27 Devi BG, Henderson GI, Frosto TA, Schenker S. Effect of acute ethanol exposure on cultured fetal rat hepatocytes: relation to mitochondrial function.  Alcohol Clin Exp Res. 1994;  18 1436-1442
  • 28 Devi BG, Henderson GI, Frosto TA, Schenker S. Effect of ethanol on rat fetal hepatocytes: studies on cell replication, lipid peroxidation and glutathione.  Hepatology. 1993;  18 648-659
  • 29 Liesivuori J, Savolainen H. Methanol and formic acid toxicity: biochemical mechanisms.  Pharmacol Toxicol. 1991;  69 157-163
  • 30 Bartsch W, Sponer G, Dietmann K, Fuchs G. Acute toxicity of various solvents in the mouse and rat. LD50 of ethanol, diethylacetamide, dimethylformamide, dimethylsulfoxide, glycerine, N-methylpyrrolidone, polyethylene glycol 400, 1,2-propanediol and Tween 20.  Arzneimittelforschung. 1976;  26 1581-1583
  • 31 Saillenfait AM, Gallissot F, Langonne I, Sabate JP. Developmental toxicity of N-methyl-2-pyrrolidone administered orally to rats.  Food Chem Toxicol. 2002;  40 1705-1712
  • 32 Lan CH, Peng CY, Lin TS. Acute aquatic toxicity of N-methyl-2-pyrrolidinone to Daphnia magna.  Bull Environ Contam Toxicol. 2004;  73 392-397

1 These authors contributed equally to this work.

Correspondence

M. Ristow

Institute of Nutrition University of Jena

29 Dornburger Straße

07743 Jena

Germany

Phone: +49/3641/94 96 30

Fax: +49/3641/94 96 32

Email: mristow@mristow.org

    >