Synlett 2008(2): 299-300  
DOI: 10.1055/s-2007-1000842
SPOTLIGHT
© Georg Thieme Verlag Stuttgart · New York

Tetramethylguanidinium Azide (TMGA) - A Versatile Azidation Agent

Roman Błaszczyk*
Institute of Organic Chemistry, Technical University of Lodz, Żeromskiego St. 116, 90-924 Lodz, Poland
e-Mail: rblaszcz@p.lodz.pl;
Further Information

Publication History

Publication Date:
21 December 2007 (online)

Introduction

Organic azides have been widely used in synthesis, especially for the construction of heterocyclic systems, and as precursors of the primary amino group. [1] One method to incorporate the azide moiety into organic compounds is to use tetramethylguanidinium azide as the azidation agent. Tetramethylguanidinium azide (TMGA, TMGN3) introduced by Papa [2] is commercially available, stable, non-toxic, and safe in use. [3] TMGA is a colorless hygroscopic solid, which is soluble in organic solvents (chloroform, dichloromethane, acetonitrile, nitromethane, DMF, acetone) and water; it is insoluble in diethyl ether and THF. The standard procedure for the preparation of TMGA involves the action of hydrazoic acid (HN3) on tetramethylguanidine in ether. [2] The use of TMGA allows the introduction of the azido group under very mild non-aqueous conditions; however, it is not recommended to use halogenated solvents because explosive azidomethane species may be formed during the reaction. [3] [4] TMGA is frequently used as a source of azide, in nucleophilic addition, substitution, azidolysis of epoxides, and heterocyclic ring formation. [5] It has been successfully used for the synthesis of alkyl, [2] alkenyl, [6] propargyl, [7] heteroaryl, [8] acyl, [9] phosphinic, [10] and sulfonyl azides [11] as well as for the preparation of tert-butyl azidoformate, [12] tetrazoles, [13] β-azido alcohols, [14] α-azido ketones [15] and α-amino acid derivatives. [16]

    References

  • 1 Bräse S. Gil C. Knepper K. Zimmermann V. Angew. Chem. Int. Ed.  2005,  44:  5188 
  • 2 Papa AJ. J. Org. Chem.  1966,  31:  1426 
  • 3a Li C. Arasappan A. Fuchs PL. Tetrahedron Lett.  1993,  34:  3535 
  • 3b Li C. Shih T.-L. Jeong JU. Arasappan A. Fuchs PL. Tetrahedron Lett.  1994,  35:  2645 
  • 4 Dharanipragada R. VanHulle K. Bannister A. Bear S. Kennedy L. Hruby VJ. Tetrahedron  1992,  48:  4733 
  • 5 Enders D. Backes M. Encyclopedia of Reagents for Organic Synthesis   Paquette AL. Wiley; New York: 2004. 
  • 6a Palacios F. Aparicio D. De los Santos JM. De Heredia IP. Rubiales G. Org. Prep. Proced. Int.  1995,  27:  171 
  • 6b Fotsing JR. Banert K. Hagedorn M. Tetrahedron  2005,  61:  8904 
  • 6c Fotsing JR. Banert K. Synthesis  2006,  261 
  • 7 Fotsing JR. Banert K. Eur. J. Org. Chem.  2005,  3704 
  • 8a Abramovitch RA. Shinkai I. Cue BWJr. Ragan FA. Atwood JL. J. Heterocycl. Chem.  1976,  13:  415 
  • 8b Dirlam JP. Cue BWJr. Gombatz KJ. J. Org. Chem.  1978,  43:  76 
  • 9 Clinch K. Marquez CJ. Parrott MJ. Ramage R. Tetrahedron  1989,  45:  239 
  • 10 Denmark SE. Dorow RL. Chirality  2002,  14:  241 
  • 11 Abramovitch AR. Azogu CI. McMaster IT. Vanderpool DP. J. Org. Chem.  1978,  43:  1218 
  • 12 Sakai K. Anselme J.-P. J. Org. Chem.  1971,  36:  2387 
  • 13a Crimmin JM. O’Hanlon PJ. Rogers NH. Walker G. J. Chem. Soc., Perkin Trans. 1  1989,  2047 
  • 13b Amer MIK. Booth BL. J. Chem. Res., Synop.  1993,  4 
  • 14a Crotti P. Di Bussolo V. Favero L. Macchia F. Pineschi M. Tetrahedron Lett.  1996,  37:  1675 
  • 14b Di Bussolo V. Caselli M. Romano MR. Pineschi M. Crotti P. J. Org. Chem.  2004,  69:  8702 
  • 14c Di Bussolo V. Romano MR. Pineschi M. Crotti P. Favero L. J. Org. Chem.  2006,  71:  1696 
  • 15 Pan Y. Merriman RL. Tanzer LR. Fuchs PL. Bioorg. Med. Chem. Lett.  1992,  2:  967 
  • 16a Evans DA. Britton TC. Ellman JA. Dorow RL. J. Am. Chem. Soc.  1990,  112:  4011 
  • 16b Smith RJ. Bienz S. Helv. Chim. Acta  2004,  87:  1681 
  • 16c Treweeke NR. Hitchcock PB. Pardoe DA. Caddick S. Chem. Commun.  2005,  1868 
  • 16d Xu J. Wei L. Mathvink R. He J. Park Y.-J. He H. Leiting B. Lyons KA. Marsilio F. Patel RA. Wu JK. Thornberry NA. Weber AE. Bioorg. Med. Chem. Lett.  2005,  15:  2533 
  • 17a Ying L. Gervay-Hague J. Carbohydr. Res.  2003,  338:  835 
  • 17b Stolz F. Reiner M. Blume A. Reutter W. Schmidt RR. J. Org. Chem.  2004,  69:  665 
  • 18 Mitchinson A. Blackaby WP. Bourrain S. Carling RW. Lewis RT. Tetrahedron Lett.  2006,  47:  2257 
  • 19 Arnold MA. Duron SG. Gin DY. J. Am. Chem. Soc.  2005,  127:  6924 
  • 20a Fan G.-T. Pan Y.-S. Lu K.-C. Cheng Y.-P. Lin W.-C. Lin S. Lin C.-H. Wong C.-H. Fang J.-M. Lin C.-C. Tetrahedron  2005,  61:  1855 
  • 20b Chang C.-W. Chen Y.-N. Adak AK. Lin K.-H. Tzou D.-LM. Lin C.-C. Tetrahedron  2007,  63:  4310 
  • 21a Pabba J. Vasella A. Tetrahedron Lett.  2005,  46:  3619 
  • 21b Pabba J. Rempel BP. Withers SG. Vasella A. Helv. Chim. Acta  2006,  89:  635