ABSTRACT
Venous thromboembolism is a major health care problem worldwide and is sustained by a multifactorial pathogenesis where both congenital and acquired causes contribute. It is increasingly being highlighted that a reliable approach based on genomics and proteomics might be effective to construct a rational personalized medicine framework that can be applied in the preclinical, clinical, and therapeutic settings of venous thrombosis. The aim of this review is to provide a concise description of the current and future applications of genomics and proteomics in this challenging pathology.
KEYWORDS
Diagnosis - genomics - proteomics - therapy - venous thromboembolism
REFERENCES
-
1
Blann A D, Lip G Y.
Venous thromboembolism.
BMJ.
2006;
332
215-219
-
2
Weitz J I.
Emerging themes in the treatment of venous thromboembolism.
Thromb Haemost.
2006;
96
239-241
-
3
McPherson E.
Genetic diagnosis and testing in clinical practice.
Clin Med Res.
2006;
4
123-129
-
4
Tripodi A, Mannucci P M.
Laboratory investigation of thrombophilia.
Clin Chem.
2001;
47
1597-1606
-
5
Spencer F A, Becker R C.
Diagnosis and management of inherited and acquired thrombophilias.
J Thromb Thrombolysis.
1999;
7
91-104
-
6
Buchanan G S, Rodgers G M, Branch D W.
The inherited thrombophilias: genetics, epidemiology, and laboratory evaluation.
Best Pract Res Clin Obstet Gynaecol.
2003;
17
397-411
-
7
Samama M, Gerotziafas G, Conard J, Horellou M, Elalamy I.
Clinical aspects and laboratory problems in hereditary thrombophilia.
Haemostasis.
1999;
29
76-99
-
8
Crowther M A, Kelton J G.
Congenital thrombophilic states associated with venous thrombosis: a qualitative overview and proposal classification system.
Ann Intern Med.
2003;
138
128-134
-
9
Franchini M, Veneri D, Salvagno G L, Manzato F, Lippi G.
Inherited thrombophilia.
Crit Rev Clin Lab Sci.
2006;
43
249-290
-
10
Simioni P.
The molecular genetics of familial venous thrombosis.
Baillieres Best Pract Res Clin Haematol.
1999;
12
479-503
-
11
Franco R F, Reitsma P H.
Genetic risk factors of venous thrombosis.
Hum Genet.
2001;
109
369-384
-
12
Schwartz H P, Fischer M, Hopmeier P, Batard M A, Griffin J H.
Plasma protein S deficiency in familial thrombotic disease.
Blood.
1984;
64
1297-1300
-
13
Borgel D, Gandrille S, Aiach M.
Protein S deficiency.
Thromb Haemost.
1997;
78
351-356
-
14
Dahlback B, Hildebrand B.
Inherited resistance to activated protein C is corrected by anticoagulant cofactor activity found to be a property of factor V.
Proc Natl Acad Sci USA.
1994;
91
1396-1400
-
15
Bertina R M, Koeleman B P, Koster T et al..
Mutation in blood coagulation factor V associated with resistance to activated protein C.
Nature.
1994;
369
64-67
-
16
Rodeghiero F, Tosetto A.
Activated protein C resistance and factor V Leiden mutation are independent risk factors for venous thromboembolism.
Ann Intern Med.
1999;
130
643-650
-
17
Poort S R, Rosendaal F R, Reitsma P H, Bertina R M.
A common genetic variation in the 3′-untranslated region of the prothrombin gene is associated with elevated plasma prothrombin levels and an increase in venous thrombosis.
Blood.
1996;
88
3698-3703
-
18
Cattaneo M.
Hyperhomocysteinemia, atherosclerosis and thrombosis.
Thromb Haemost.
1999;
81
165-176
-
19
Arruda V R, von Zuben P M, Chiaparini L C, Annichino-Bizzacchi J M, Costa F F.
The mutation Ala677 in the methylene tetrahydrofolate reductase gene: a risk factor for arterial disease and venous thrombosis.
Thromb Haemost.
1997;
77
818-821
-
20
Robetorye R S, Rodgers G M.
Update on selected inherited venous thrombotic disorders.
Am J Hematol.
2001;
68
256-268
-
21
Kyrle P A, Minar E, Hirschl M et al..
High plasma levels of factor VIII end the risk of recurrent venous thrombembolism.
N Engl J Med.
2000;
343
457-462
-
22
Koster T, Blann A D, Briet E, Vandenbroucke J P, Rosendaal F R.
Role of clotting factor VIII in effect of von Willebrand factor on occurrence of deep-vein thrombosis.
Lancet.
1995;
345
152-155
-
23
Kamphuisen P W, Houwing-Duistermaat J J, van Houwelingen H C et al..
Familial clustering of factor VIII and von Willebrand factor levels.
Thromb Haemost.
1998;
79
323-327
-
24
Berger M, Mattheisen M, Kulle B et al..
High factor VIII levels in venous thromboembolism show linkage to imprinted loci on chromosomes 5 and 11.
Blood.
2005;
105
638-644
-
25
Zidane M, de Visser M C, ten Wolde M et al..
Frequency of the TAFI -438 G/A and factor XIIIA Val34Leu polymorphisms in patients with objectively proven pulmonary embolism.
Thromb Haemost.
2003;
90
439-445
-
26
Camilleri R S, Cohen H.
No association between pulmonary embolism or deep vein thrombosis and the -455G/A beta-fibrinogen gene polymorphism.
Blood Coagul Fibrinolysis.
2005;
16
193-198
-
27
Carter A M, Catto A J, Kohler H P et al..
Alpha-fibrinogen Thr312Ala polymorphism and venous thromboembolism.
Blood.
2000;
96
1177-1179
-
28
Wells P S, Rodger M A, Forgie M A et al..
The ACE D/D genotype is protective against the development of idiopathic deep vein thrombosis and pulmonary embolism.
Thromb Haemost.
2003;
90
829-834
-
29
Fatini C, Gensini F, Sticchi E et al..
ACE DD genotype: an independent predisposition factor to venous thromboembolism.
Eur J Clin Invest.
2003;
33
642-647
-
30
Medina P, Navarro S, Estelles A et al..
Contribution of polymorphisms in the endothelial protein C receptor gene to soluble endothelial protein C receptor and circulating activated protein C levels, and thrombotic risk.
Thromb Haemost.
2004;
91
905-911
-
31
Hoppe B, Tolou F, Dorner T, Kiesewetter H, Salama A.
Gene polymorphisms implicated in influencing susceptibility to venous and arterial thromboembolism: frequency distribution in a healthy German population.
Thromb Haemost.
2006;
96
465-470
-
32
Luxembourg B, Lindhoff-Last E.
Genomic diagnosis of thrombophilia in women: clinical relevance.
Hamostaseologie.
2007;
27
22-31
-
33
Delpech M.
Genetic testing.
Arch Mal Coeur Vaiss.
2003;
96
1030-1032
-
34
Federici C, Gianetti J, Andreassi M G.
Genomic medicine and thrombotic risk: who, when, how and why?.
Int J Cardiol.
2006;
106
3-9
-
35
Zoller B, Garcia de Frutos P, Hillarp A, Dahlback B.
Thrombophilia as a multigenic disease.
Haematologica.
1999;
84
59-70
-
36
Pecheniuk N M, Walsh T P, Marsh N A.
DNA technology for the detection of common genetic variants that predispose to thrombophilia.
Blood Coagul Fibrinolysis.
2000;
11
683-700
-
37
Erali M, Schmidt B, Lyon E, Wittwer C.
Evaluation of electronic microarrays for genotyping factor V, factor II, and MTHFR.
Clin Chem.
2003;
49
732-739
-
38
Dallapiccola B, Torrente I, Morena A, Dagna-Bricarelli F, Mingarelli R.
Genetic testing in Italy, year 2004.
Eur J Hum Genet.
2006;
14
911-916
-
39
Grody W W, Griffin J H, Taylor A K, Korf B R, Heit J A.
for the ACMG Factor V Leiden Working Group. American College of Medical Genetics consensus statement on factor V Leiden mutation testing.
Genet Med.
2001;
3
139-148
-
40
Tripodi A.
Issues concerning the laboratory investigation of inherited thrombophilia.
Mol Diagn.
2005;
9
181-186
-
41
Hertzberg M S.
Genetic testing for thrombophilia mutations.
Semin Thromb Hemost.
2005;
31
33-38
-
42
Wu O, Robertson L, Twaddle S et al..
Screening for thrombophilia in high-risk situations: systematic review and cost-effectiveness analysis. The Thrombosis: Risk and Economic Assessment of Thrombophilia Screening (TREATS) study.
Health Technol Assess.
2006;
10
1-110
-
43
Peaston A E, Whitelaw E.
Epigenetics and phenotypic variation in mammals.
Mamm Genome.
2006;
17
365-374
-
44
Parker J, Pagliuca A, Kitiyakara T et al..
Discrepancy between phenotype and genotype on screening for factor V Leiden after transplantation.
Blood.
2001;
97
2525-2526
-
45
Hyytiainen S, Wartiovaara-Kautto U, Ulander V M et al..
The procoagulant effects of factor V Leiden may be balanced against decreased levels of factor V and do not reflect in vivo thrombin formation in newborns.
Thromb Haemost.
2006;
95
434-440
-
46
Poon T C.
Opportunities and limitations of SELDI-TOF-MS in biomedical research: practical advices.
Expert Rev Proteomics.
2007;
4
51-65
-
47
Svensson A M, Whiteley G R, Callas P W, Bovill E G.
SELDI-TOF plasma profiles distinguish individuals in a protein C-deficient family with thrombotic episodes occurring before age 40.
Thromb Haemost.
2006;
96
725-730
-
48
Gelfi C, Vigano A, Ripamonti M et al..
A proteomic analysis of changes in prothrombin and plasma proteins associated with the G20210A mutation.
Proteomics.
2004;
4
2151-2159
-
49
Scully M F.
Plasma peptidome: a new approach for assessing thrombotic risk?.
Thromb Haemost.
2006;
96
697
-
50
Varshavsky A.
The N-end rule: functions, mysteries, uses.
Proc Natl Acad Sci USA.
1996;
93
12142-12149
-
51
Donners M M, Verluyten M J, Bouwman F G et al..
Proteomic analysis of differential protein expression in human atherosclerotic plaque progression.
J Pathol.
2005;
206
39-45
-
52
Weitz J I.
Emerging anticoagulants for the treatment of venous thromboembolism.
Thromb Haemost.
2006;
96
274-284
-
53
Franchini M, Lippi G.
Antagonists of activated factor X and thrombin: innovative antithrombotic agents.
Curr Vasc Pharmacol.
2007;
5
121-128
-
54
Watzke H H.
Oral anticoagulation after a first episode of venous thromboembolism: how long? How strong?.
Thromb Haemost.
1999;
82
124-126
-
55
Ansell J, Hirsh J, Poller L et al..
The pharmacology and management of the vitamin K antagonists: the Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy.
Chest.
2004;
126
204S-233S
-
56
du Breuil A L, Umland E M.
Outpatient management of anticoagulation therapy.
Am Fam Physician.
2007;
75
1031-1042
-
57
Dvorak Z, Ulrichova J, Modriansky M.
Role of microtubules network in CYP genes expression.
Curr Drug Metab.
2005;
6
545-552
-
58
Arimoto R.
Computational models for predicting interactions with cytochrome p450 enzyme.
Curr Top Med Chem.
2006;
6
1609-1618
-
59
Rettie A E, Korzekwa K R, Kunze K L et al..
Hydroxylation of warfarin by human cDNA-expressed cytochrome P-450: a role for P-4502C9 in the etiology of (S)-warfarin-drug interactions.
Chem Res Toxicol.
1992;
5
54-59
-
60
Seifert A, Tatzel S, Schmid R D, Pleiss J.
Multiple molecular dynamics simulations of human p450 monooxygenase CYP2C9: the molecular basis of substrate binding and regioselectivity toward warfarin.
Proteins.
2006;
64
147-155
-
61
Hlavica P, Lewis D F.
Allosteric phenomena in cytochrome P450-catalyzed monooxygenations.
Eur J Biochem.
2001;
268
4817-4832
-
62
Schwarz U I.
Clinical relevance of genetic polymorphisms in the human CYP2C9 gene.
Eur J Clin Invest.
2003;
33
23-30
-
63
Haining R L, Jones J P, Henne K R et al..
Enzymatic determinants of the substrate specificity of CYP2C9: role of B'-C loop residues in providing the pi-stacking anchor site for warfarin binding.
Biochemistry.
1999;
38
3285-3292
-
64
Ridderstrom M, Masimirembwa C, Trump-Kallmeyer S et al..
Arginines 97 and 108 in CYP2C9 are important determinants of the catalytic function.
Biochem Biophys Res Commun.
2000;
270
983-987
-
65
Williams P A, Cosme J, Ward A et al..
Crystal structure of human cytochrome P450 2C9 with bound warfarin.
Nature.
2003;
424
464-468
-
66
Clodfelter K H, Waxman D J, Vajda S.
Computational solvent mapping reveals the importance of local conformational changes for broad substrate specificity in mammalian cytochromes P450.
Biochemistry.
2006;
45
9393-9407
-
67
Wajih N, Sane D C, Hutson S M, Wallin R.
Engineering of a recombinant vitamin K-dependent gamma-carboxylation system with enhanced gamma-carboxyglutamic acid forming capacity: evidence for a functional CXXC redox center in the system.
J Biol Chem.
2005;
280
10540-10547
-
68
Loriot M A, Beaune P.
Vitamin K epoxide reductase: fresh blood for oral anticoagulant therapies.
Rev Med Interne.
2006;
27
979-982
-
69
Goodstadt L, Ponting C P.
Vitamin K epoxide reductase: homology, active site and catalytic mechanism.
Trends Biochem Sci.
2004;
29
289-292
-
70
Oldenburg J, Bevans C G, Muller C R, Watzka M.
Vitamin K epoxide reductase complex subunit 1 (VKORC1): the key protein of the vitamin K cycle.
Antioxid Redox Signal.
2006;
8
347-353
-
71
Rost S, Fregin A, Ivaskevicius V et al..
Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2.
Nature.
2004;
427
537-541
-
72
Fasco M J, Principe L M, Walsh W A, Friedman P A.
Warfarin inhibition of vitamin K 2,3-epoxide reductase in rat liver microsomes.
Biochemistry.
1983;
22
5655-5660
-
73
Wallin R, Patrick S D, Martin L F.
Rat and human liver vitamin K epoxide reductase: inhibition by thiol blockers and vitamin K1.
Int J Biochem.
1987;
19
1063-1068
-
74
Krynetskiy E, McDonnell P.
Building individualized medicine: prevention of adverse reactions to warfarin therapy.
J Pharmacol Exp Ther.
2007;
322
427-434
-
75
Rieder M J, Reiner A P, Gage B F et al..
Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose.
N Engl J Med.
2005;
352
2285-2293
-
76
Zhu Y, Shennan M, Reynolds K K et al..
Estimation of warfarin maintenance dose based on VKORC1 (-1639 G> A) and CYP2C9 genotypes.
Clin Chem.
2007;
53
1199-1205
-
77
Montes R, Ruiz de Gaona E, Martinez-Gonzalez M A, Alberca I, Hermida J.
The c.-1639G > A polymorphism of the VKORC1 gene is a major determinant of the response to acenocoumarol in anticoagulated patients.
Br J Haematol.
2006;
133
183-187
-
78
Gage B F.
Pharmacogenetics-based coumarin therapy.
Hematology (Am Soc Hematol Educ Program).
2006;
467-473
-
79
Osman A, Enstrom C, Arbring K, Soderkvist P, Lindahl T L.
Main haplotypes and mutational analysis of vitamin K epoxide reductase (VKORC1) in a Swedish population: a retrospective analysis of case records.
J Thromb Haemost.
2006;
4
1723-1729
-
80
Loebstein R, Dvoskin I, Halkin H et al..
A coding VKORC1 Asp36Tyr polymorphism predisposes to warfarin resistance.
Blood.
2007;
109
2477-2480
-
81
Margaglione M, Colaizzo D, D'Andrea G et al..
Genetic modulation of oral anticoagulation with warfarin.
Thromb Haemost.
2000;
84
775-778
-
82
Kirchheiner J, Brockmoller J.
Clinical consequences of cytochrome P450 2C9 polymorphisms.
Clin Pharmacol Ther.
2005;
77
1-16
-
83
Carlquist J F, Horne B D, Muhlestein J B et al..
Genotypes of the cytochrome p450 isoform, CYP2C9, and the vitamin K epoxide reductase complex subunit 1 conjointly determine stable warfarin dose: a prospective study.
J Thromb Thrombolysis.
2006;
22
191-197
-
84
Caldwell M D, Berg R L, Zhang K Q et al..
Evaluation of genetic factors for warfarin dose prediction.
Clin Med Res.
2007;
5
8-16
-
85
Sconce E A, Daly A K, Khan T I, Wynne H A, Kamali F.
APOE genotype makes a small contribution to warfarin dose requirements.
Pharmacogenet Genomics.
2006;
16
609-611
-
86
Schalekamp T, Brasse B P, Roijers J F et al..
VKORC1 and CYP2C9 genotypes and acenocoumarol anticoagulation status: interaction between both genotypes affects overanticoagulation.
Clin Pharmacol Ther.
2006;
80
13-22
-
87
Brandin H, Myrberg O, Rundlof T, Arvidsson A K, Brenning G.
Adverse effects by artificial grapefruit seed extract products in patients on warfarin therapy.
Eur J Clin Pharmacol.
2007;
63
565-570
-
88
Kealey C, Chen Z, Christie J et al..
Warfarin and cytochrome P450 2C9 genotype: possible ethnic variation in warfarin sensitivity.
Pharmacogenomics.
2007;
8
217-225
-
89
Hertzberg M, Neville S, Favaloro E, McDonald D.
External quality assurance of DNA testing for thrombophilia mutations.
Am J Clin Pathol.
2005;
123
189-193
-
90
Favaloro E J.
Diagnostic issues in thrombophilia: a laboratory scientist's view.
Semin Thromb Hemost.
2005;
31
11-16
Prof. Giuseppe Lippi
Sezione di Chimica Clinica, Dipartimento di Scienze Morfologico-Biomediche, Ospedale Policlinico G.B. Rossi, Piazzale Scuro
10, 37134 Verona, Italy
Email: giuseppe.lippi@univr.it; ulippi@tin.it