Semin Liver Dis 2007; 27(1): 099-108
DOI: 10.1055/s-2006-960173
Copyright © 2007 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Genetic Aspects of Porphyria Cutanea Tarda

Richard W. Lambrecht1 , Manish Thapar2 , Herbert L. Bonkovsky3
  • 1Department of Pharmacology, and The Liver-Biliary-Pancreatic Center, University of Connecticut Health Center, Farmington, Connecticut
  • 2Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut
  • 3Departments of Medicine and Molecular, Microbial, & Structural Biology, and The Liver-Biliary-Pancreatic Center, University of Connecticut Health Center, Farmington, Connecticut
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
12. Februar 2007 (online)

ABSTRACT

Porphyria cutanea tarda (PCT) is caused by disruption of heme biosynthesis at the step catalyzed by uroporphyrinogen decarboxylase. The patients present with photosensitive cutaneous lesions, hepatic pathology (including elevated porphyrin levels), and increased excretion of porphyrins. Therapy consists of removing the exacerbating factors of PCT (reduced sunlight exposure, abstinence from alcohol use, decreased estrogen exposure, and treatment for viral infections), decreasing body iron stores (by therapeutic phlebotomy or by the use of the new orally active iron chelators), and, in some instances, the use of low-dose antimalarials. Recent advances in genetics and genomics have allowed DNA testing for porphyria cutanea tarda and are likely to be instrumental in developing improved, gene-based treatments and in finding genetic loci (in addition to uroporphyrinogen decarboxylase) involved in the clinical expression of this disease.

REFERENCES

  • 1 Waldenstrom J. Studien ueber Porphyrie.  Acta Med Scand. 1937;  82(suppl) 1-254
  • 2 Elder G H. Porphyria cutanea tarda.  Semin Liver Dis. 1998;  18 67-75
  • 3 Sweeney G D. Porphyria cutanea tarda, or the uroporphyrinogen decarboxylase deficiency diseases.  Clin Biochem. 1986;  19 3-15
  • 4 Moran M J, Fontanellas A, Brudieux E et al.. Hepatic uroporphyrinogen decarboxylase activity in porphyria cutanea tarda patients: the influence of virus C infection.  Hepatology. 1998;  27 584-589
  • 5 Elder G H. The cutaneous porphyrias.  Semin Dermatol. 1990;  9 63-69
  • 6 O'Reilly F M, Darby C, Fogarty J et al.. Screening of patients with iron overload to identify hemochromatosis and porphyria cutanea tarda.  Arch Dermatol. 1997;  133 1098-1101
  • 7 Bonkovsky H L, Lambrecht R W, Shan Y. Iron as a co-morbid factor in nonhemochromatotic liver disease.  Alcohol. 2003;  30 137-144
  • 8 Bonkovsky H L, Lambrecht R W. Iron-induced liver injury.  Clin Liver Dis. 2000;  4 409-429
  • 9 Alla V, Bonkovsky H L. Iron in nonhemochromatotic liver disorders.  Semin Liver Dis. 2005;  25 461-472
  • 10 Felsher B F, Kushner J P. Hepatic siderosis and porphyria cutanea tarda: relation of iron excess to the metabolic defect.  Semin Hematol. 1977;  14 243-251
  • 11 Lambrecht R W, Jacobs J M, Sinclair P R, Sinclair J F. Inhibition of uroporphyrinogen decarboxylase activity: the role of cytochrome P-450-mediated uroporphyrinogen oxidation.  Biochem J. 1990;  269 437-441
  • 12 Lambrecht R W, Bonkovsky H L. Hemochromatosis and porphyria.  Semin Gastrointest Dis. 2002;  13 109-119
  • 13 Mukerji S K. Haem biosynthesis and human porphyria cutanea tarda: effects of alcohol intake.  Indian J Exp Biol. 2000;  38 635-642
  • 14 Daniell W E, Stockbridge H L, Labbe R F et al.. Environmental chemical exposures and disturbances of heme synthesis.  Environ Health Perspect. 1997;  105(suppl 1) 37-53
  • 15 Mor Z, Caspi E. Cutaneous complications of hormonal replacement therapy.  Clin Dermatol. 1997;  15 147-154
  • 16 Sterling R K, Bralow S. Extrahepatic manifestations of hepatitis C virus.  Curr Gastroenterol Rep. 2006;  8 53-59
  • 17 Almehmi A, Deliri H, Szego G G et al.. Porphyria cutanea tarda in a patient with HIV-infection.  W V Med J. 2005;  101 19-21
  • 18 Bonkovsky H L, Poh-Fitzpatrick M, Pimstone N et al.. Porphyria cutanea tarda, hepatitis C, and HFE gene mutations in North America.  Hepatology. 1998;  27 1661-1669
  • 19 Kondo M, Yano Y, Shirataka M, Urata G, Sassa S. Porphyrias in Japan: compilation of all cases reported through 2002.  Int J Hematol. 2004;  79 448-456
  • 20 Badminton M N, Elder G H. Molecular mechanisms of dominant expression in porphyria.  J Inherit Metab Dis. 2005;  28 277-286
  • 21 Elder G H, Urquhart A J, De Salamanca R E, Munoz J J, Bonkovsky H L. Immunoreactive uroporphyrinogen decarboxylase in the liver in porphyria cutanea tarda.  Lancet. 1985;  2 229-233
  • 22 Egger N G, Goeger D E, Payne D A et al.. Porphyria cutanea tarda: multiplicity of risk factors including HFE mutations, hepatitis C, and inherited uroporphyrinogen decarboxylase deficiency.  Dig Dis Sci. 2002;  47 419-426
  • 23 Armstrong D K, Sharpe P C, Chambers C R et al.. Hepatoerythropoietic porphyria: a missense mutation in the UROD gene is associated with mild disease and an unusual porphyrin excretion pattern.  Br J Dermatol. 2004;  151 920-923
  • 24 Elder G H, Smith S G, Herrero C et al.. Hepatoerythropoietic porphyria: a new uroporphyrinogen decarboxylase defect or homozygous porphyria cutanea tarda?.  Lancet. 1981;  1 916-919
  • 25 Cruz-Rojo J, Fontanellas A, Moran-Jimenez M J et al.. Precipitating/aggravating factors of porphyria cutanea tarda in Spanish patients.  Cell Mol Biol (Noisy-le-grand). 2002;  48 845-852
  • 26 Pimstone N R. Hematologic and hepatic manifestations of the cutaneous porphyrias.  Clin Dermatol. 1985;  3 83-102
  • 27 Bonkovsky H L. Mechanism of iron potentiation of hepatic uroporphyria: studies in cultured chick embryo liver cells.  Hepatology. 1989;  10 354-364
  • 28 Fracanzani A L, Taioli E, Sampietro M et al.. Liver cancer risk is increased in patients with porphyria cutanea tarda in comparison to matched control patients with chronic liver disease.  J Hepatol. 2001;  35 498-503
  • 29 Shehan J M, Huerter C J. Porphyria cutanea tarda associated with an acute gastrointestinal bleed: the roles of supplemental iron and blood transfusion.  Cutis. 2001;  68 147-150
  • 30 Chemmanur A T, Bonkovsky H L. Hepatic porphyrias: diagnosis and management.  Clin Liver Dis. 2004;  8 807-838
  • 31 Badiu C, Cristofor D, Voicu D, Coculescu M. Diagnostic traps in porphyria: case report and literature review.  Rev Med Chir Soc Med Nat Iasi. 2004;  108 584-591
  • 32 Lockwood W H, Poulos V, Rossi E, Curnow D H. Rapid procedure for fecal porphyrin assay.  Clin Chem. 1985;  31 1163-1167
  • 33 Cooper C L, Stob C M, Jones M A, Lash T D. Metabolism of pentacarboxylate porphyrinogens by highly purified human coproporphyrinogen oxidase: further evidence for the existence of an abnormal pathway for heme biosynthesis.  Bioorg Med Chem. 2005;  13 6244-6251
  • 34 Lim C K, Peters T J. Urine and faecal porphyrin profiles by reversed-phase high-performance liquid chromatography in the porphyrias.  Clin Chim Acta. 1984;  139 55-63
  • 35 Kostler E, Wollina U. Therapy of porphyria cutanea tarda.  Expert Opin Pharmacother. 2005;  6 377-383
  • 36 Freesemann A, Frank M, Sieg I, Doss M O. Treatment of porphyria cutanea tarda by the effect of chloroquine on the liver.  Skin Pharmacol. 1995;  8 156-161
  • 37 Drago F, Battifoglio M L, Gelati G, Rebora A. Very low-dose chloroquine treatment for porphyria cutanea tarda.  Acta Derm Venereol. 1995;  75 329-330
  • 38 Berk D R, Mallory S B, Keeffe E B, Ahmed A. Dermatologic disorders associated with chronic hepatitis C: effect of interferon therapy.  Clin Gastroenterol Hepatol. 2006;  , August 16 (Epub ahead of print)
  • 39 Hift R J, Corrigall A V, Hancock V et al.. Porphyria cutanea tarda: the etiological importance of mutations in the HFE gene and viral infection is population-dependent.  Cell Mol Biol (Noisy-le-grand). 2002;  48 853-859
  • 40 Ajioka R S, Phillips J D, Kushner J P. Biosynthesis of heme in mammals.  Biochim Biophys Acta. 2006;  1763 723-736
  • 41 Ponka P. Cell biology of heme.  Am J Med Sci. 1999;  318 241-256
  • 42 Tsiftsoglou A S, Tsamadou A I, Papadopoulou L C. Heme as key regulator of major mammalian cellular functions: molecular, cellular, and pharmacological aspects.  Pharmacol Ther. 2006;  111 327-345
  • 43 Ibraham N G, Friedland M L, Levere R D. Heme metabolism in erythroid and hepatic cells.  Prog Hematol. 1983;  13 75-130
  • 44 Taketani S. Acquisition, mobilization and utilization of cellular iron and heme: endless findings and growing evidence of tight regulation.  Tohoku J Exp Med. 2005;  205 297-318
  • 45 Podvinec M, Handschin C, Looser R, Meyer U A. Identification of the xenosensors regulating human 5-aminolevulinate synthase.  Proc Natl Acad Sci USA. 2004;  101 9127-9132
  • 46 Surinya K H, Cox T C, May B K. Transcriptional regulation of the human erythroid 5-aminolevulinate synthase gene: identification of promoter elements and role of regulatory proteins.  J Biol Chem. 1997;  272 26585-26594
  • 47 Munakata H, Sun J Y, Yoshida K et al.. Role of the heme regulatory motif in the heme-mediated inhibition of mitochondrial import of 5-aminolevulinate synthase.  J Biochem (Tokyo). 2004;  136 233-238
  • 48 Cable E E, Gildemeister O S, Pepe J A et al.. Hepatic 5-aminolevulinic acid synthase mRNA stability is modulated by inhibitors of heme biosynthesis and by metalloporphyrins.  Eur J Biochem. 1996;  240 112-117
  • 49 Kolluri S, Sadlon T J, May B K, Bonkovsky H L. Haem repression of the housekeeping 5-aminolaevulinic acid synthase gene in the hepatoma cell line LMH.  Biochem J. 2005;  392 173-180
  • 50 Lincoln B C, Aw T Y, Bonkovsky H L. Heme catabolism in cultured hepatocytes: evidence that heme oxygenase is the predominant pathway and that a proportion of synthesized heme is converted rapidly to biliverdin.  Biochim Biophys Acta. 1989;  992 49-58
  • 51 Maines M D, Trakshel G M, Kutty R K. Characterization of two constitutive forms of rat liver microsomal heme oxygenase: only one molecular species of the enzyme is inducible.  J Biol Chem. 1986;  261 411-419
  • 52 Sun J, Hoshino H, Takaku K et al.. Hemoprotein Bach1 regulates enhancer availability of heme oxygenase-1 gene.  EMBO J. 2002;  21 5216-5224
  • 53 Sun J, Brand M, Zenke Y et al.. Heme regulates the dynamic exchange of Bach1 and NF-E2-related factors in the Maf transcription factor network.  Proc Natl Acad Sci USA. 2004;  101 1461-1466
  • 54 Shan Y, Lambrecht R W, Ghaziani T, Donohue S E, Bonkovsky H L. Role of Bach-1 in regulation of heme oxygenase-1 in human liver cells: insights from studies with small interfering RNAS.  J Biol Chem. 2004;  279 51769-51774
  • 55 Shan Y, Lambrecht R W, Bonkovsky H L. Identification of key elements that are responsible for heme-mediated induction of the avian heme oxygenase-1 gene.  Biochim Biophys Acta. 2004;  1679 87-94
  • 56 Wijayanti N, Katz N, Immenschuh S. Biology of heme in health and disease.  Curr Med Chem. 2004;  11 981-986
  • 57 Phillips J D, Jackson L K, Bunting M et al.. A mouse model of familial porphyria cutanea tarda.  Proc Natl Acad Sci USA. 2001;  98 259-264
  • 58 Rao A U, Carta L K, Lesuisse E, Hamza I. Lack of heme synthesis in a free-living eukaryote.  Proc Natl Acad Sci USA. 2005;  102 4270-4275
  • 59 Rothstein M, Coppens M. Nutritional factors and conditions for the axenic culture of free-living nematodes.  Comp Biochem Physiol B. 1978;  61 99-104
  • 60 Whitby F G, Phillips J D, Kushner J P, Hill C P. Crystal structure of human uroporphyrinogen decarboxylase.  EMBO J. 1998;  17 2463-2471
  • 61 Martins B M, Grimm B, Mock H P, Huber R, Messerschmidt A. Crystal structure and substrate binding modeling of the uroporphyrinogen-III decarboxylase from Nicotiana tabacum: implications for the catalytic mechanism.  J Biol Chem. 2001;  276 44108-44116
  • 62 Romana M, Le Boulch P, Romeo P H. Rat uroporphyrinogen decarboxylase cDNA: nucleotide sequence and comparison to human uroporphyrinogen decarboxylase.  Nucleic Acids Res. 1987;  15 7211
  • 63 Phillips J D, Parker T L, Schubert H L et al.. Functional consequences of naturally occurring mutations in human uroporphyrinogen decarboxylase.  Blood. 2001;  98 3179-3185
  • 64 Smith A G, Francis J E. Investigations of rat liver uroporphyrinogen decarboxylase: comparisons of porphyrinogens I and III as substrates and the inhibition by porphyrins.  Biochem J. 1981;  195 241-250
  • 65 Sinclair P, Lambrecht R, Sinclair J. Evidence for cytochrome P450-mediated oxidation of uroporphyrinogen by cell-free liver extracts from chick embryos treated with 3-methylcholanthrene.  Biochem Biophys Res Commun. 1987;  146 1324-1329
  • 66 Jacobs J M, Sinclair P R, Bement W J et al.. Oxidation of uroporphyrinogen by methylcholanthrene-induced cytochrome P-450: essential role of cytochrome P-450d.  Biochem J. 1989;  258 247-253
  • 67 Jacobs J M, Sinclair P R, Lambrecht R W, Sinclair J F, Jacobs N J. Role of inducer binding in cytochrome P-450 IA2-mediated uroporphyrinogen oxidation.  J Biochem Toxicol. 1990;  5 193-199
  • 68 Romana M, Dubart A, Beaupain D et al.. Structure of the gene for human uroporphyrinogen decarboxylase.  Nucleic Acids Res. 1987;  15 7343-7356
  • 69 Hansen J L, Pryor M A, Kennedy J B, Kushner J P. Steady-state levels of uroporphyrinogen decarboxylase mRNA in lymphoblastoid cell lines from patients with familial porphyria cutanea tarda and their relatives.  Am J Hum Genet. 1988;  42 847-853
  • 70 Harraway J R, Florkowski C M, Sies C, George P M. Dual porphyria with mutations in both the UROD and HMBS genes.  Ann Clin Biochem. 2006;  43 80-82
  • 71 Christiansen L, Brons-Poulsen J, Horder M, Brock A, Petersen N E. Expression and characterization of six clinically relevant uroporphyrinogen decarboxylase gene mutations.  Scand J Clin Lab Invest. 2005;  65 227-235
  • 72 Mendez M, Rossetti M V, Del C Batlle A M, Parera V E. The role of inherited and acquired factors in the development of porphyria cutanea tarda in the Argentinean population.  J Am Acad Dermatol. 2005;  52 417-424
  • 73 Poblete-Gutierrez P, Mendez M, Wiederholt T et al.. The molecular basis of porphyria cutanea tarda in Chile: identification and functional characterization of mutations in the uroporphyrinogen decarboxylase gene.  Exp Dermatol. 2004;  13 372-379
  • 74 Martinez di Montemuros F, Tavazzi D, Patti E, Cappellini M D. Human gene mutations. Gene symbol: UROD. Disease: porphyria, cutanea tarda.  Hum Genet. 2004;  114 221
  • 75 Martinez di Montemuros F, Tavazzi D, Patti E, Cappellini M D. Gene symbol: UROD. Disease: porphyria, cutanea tarda.  Hum Genet. 2003;  113 368
  • 76 Martinez di Montemuros F, Di Pierro E, Patti E et al.. Molecular characterization of porphyrias in Italy: a diagnostic flow-chart.  Cell Mol Biol (Noisy-le-grand). 2002;  48 867-876
  • 77 Ged C, Ozalla D, Herrero C et al.. Description of a new mutation in hepatoerythropoietic porphyria and prenatal exclusion of a homozygous fetus.  Arch Dermatol. 2002;  138 957-960
  • 78 Cappellini M D, Martinez di Montemuros F, Tavazzi D et al.. Seven novel point mutations in the uroporphyrinogen decarboxylase (UROD) gene in patients with familial porphyria cutanea tarda (f-PCT).  Hum Mutat. 2001;  17 350
  • 79 Christiansen L, Ged C, Hombrados I et al.. Screening for mutations in the uroporphyrinogen decarboxylase gene using denaturing gradient gel electrophoresis: identification and characterization of six novel mutations associated with familial PCT.  Hum Mutat. 1999;  14 222-232
  • 80 McManus J F, Begley C G, Sassa S, Ratnaike S. Three new mutations in the uroporphyrinogen decarboxylase gene in familial porphyria cutanea tarda: mutation in brief no. 237. Online.  Hum Mutat. 1999;  13 412
  • 81 McManus J F, Begley C G, Sassa S, Ratnaike S. Five new mutations in the uroporphyrinogen decarboxylase gene identified in families with cutaneous porphyria.  Blood. 1996;  88 3589-3600
  • 82 Garey J R, Hansen J L, Harrison L M, Kennedy J B, Kushner J P. A point mutation in the coding region of uroporphyrinogen decarboxylase associated with familial porphyria cutanea tarda.  Blood. 1989;  73 892-895
  • 83 Garey J R, Harrison L M, Franklin K F et al.. Uroporphyrinogen decarboxylase: a splice site mutation causes the deletion of exon 6 in multiple families with porphyria cutanea tarda.  J Clin Invest. 1990;  86 1416-1422
  • 84 Peters H A, Cripps D J, Lambrecht R W et al.. History and geography of hexachlorobenzene poisoning in southeastern Turkey.  IARC Sci Publ. 1986;  (77) 131-132
  • 85 Erturk E, Lambrecht R W, Peters H A et al.. Oncogenicity of hexachlorobenzene.  IARC Sci Publ. 1986;  (77) 417-423
  • 86 Lambrecht R W, Sinclair P R, Bement W J, Sinclair J F. Uroporphyrin accumulation in cultured chick embryo hepatocytes: comparison of 2,3,7,8-tetrachlorodibenzo-p-dioxin and 3,4,3′,4′-tetrachlorobiphenyl.  Toxicol Appl Pharmacol. 1988;  96 507-516
  • 87 Gorman N, Ross K L, Walton H S et al.. Uroporphyria in mice: thresholds for hepatic CYP1A2 and iron.  Hepatology. 2002;  35 912-921
  • 88 Lambrecht R W, Sinclair P R, Bement W J et al.. Hepatic uroporphyrin accumulation and uroporphyrinogen decarboxylase activity in cultured chick-embryo hepatocytes and in Japanese quail (Coturnix coturnix japonica) and mice treated with polyhalogenated aromatic compounds.  Biochem J. 1988;  253 131-138
  • 89 Cantoni L, Graziani A, Rizzardini M, Saletti M C. Porphyrinogenic effect of hexachlorobenzene and 2,3,7,8-tetrachlorodibenzo-para-dioxin: is an inhibitor involved in uroporphyrinogen decarboxylase inactivation?.  IARC Sci Publ. 1986;  (77) 449-456
  • 90 Goldstein J A, Friesen M, Scotti T M et al.. Assessment of the contribution of chlorinated dibenzo-p-dioxins and dibenzofurans to hexachlorobenzene-induced toxicity, porphyria, changes in mixed function oxygenases, and histopathological changes.  Toxicol Appl Pharmacol. 1978;  46 633-649
  • 91 Bowers M A, Luckhurst C L, Davis H A, Woods J S. Investigation of factors influencing urinary porphyrin excretion in rats: strain, gender, and age.  Fundam Appl Toxicol. 1992;  19 538-544
  • 92 Wang H, Long Q, Marty S D, Sassa S, Lin S. A zebrafish model for hepatoerythropoietic porphyria.  Nat Genet. 1998;  20 239-243
  • 93 Cappellini M D. Iron-chelating therapy with the new oral agent ICL670 (Exjade).  Best Pract Res Clin Haematol. 2005;  18 289-298
  • 94 Vanorden H E, Hagemann T M. Deferasirox: an oral agent for chronic iron overload.  Ann Pharmacother. 2006;  40 1110-1117
  • 95 Fontanellas A, Mazurier F, Moreau-Gaudry F et al.. Correction of uroporphyrinogen decarboxylase deficiency (hepatoerythropoietic porphyria) in Epstein-Barr virus-transformed B-cell lines by retrovirus-mediated gene transfer: fluorescence-based selection of transduced cells.  Blood. 1999;  94 465-474
  • 96 Richard E, Geronimi F, Lalanne M et al.. A bicistronic SIN-lentiviral vector containing G156A MGMT allows selection and metabolic correction of hematopoietic protoporphyric cell lines.  J Gene Med. 2003;  5 737-747

Richard W LambrechtPh.D. 

Assistant Professor, Department of Pharmacology, and The Liver-Biliary-Pancreatic Center, University of Connecticut Health Center

263 Farmington Avenue, Farmington, CT 06030-1119

    >