Semin Liver Dis 2007; 27(1): 055-076
DOI: 10.1055/s-2006-960171
Copyright © 2007 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Genomics and Signaling Pathways in Hepatocellular Carcinoma

Augusto Villanueva1 , Philippa Newell1 , Derek Y. Chiang2 , 3 , Scott L. Friedman1 , Josep M. Llovet1 , 4
  • 1Mount Sinai Liver Cancer Program, Division of Liver Diseases, Mount Sinai School of Medicine, New York, New York
  • 2Broad Institute of MIT and Harvard, Cambridge, Massachusetts
  • 3Dana-Farber Cancer Institute, Boston, Massachusetts
  • 4BCLC Group, IDIBAPS, Liver Unit, Hospital Clinic, Barcelona, Spain
Further Information

Publication History

Publication Date:
12 February 2007 (online)

ABSTRACT

Hepatocellular carcinoma (HCC) is a leading cause of death among cirrhotic patients and has become a major health problem in developed countries. There is an elemental understanding of the genes and signaling pathways involved in the initiation and progression of this neoplasm. The current hypothesis of the HCC cell origin includes both somatic cells (hepatocytes) and stem cells/progenitor cells. Unlike that in other malignancies such as breast, brain, or hematopoietic cancers, the implication of cancer stem cells in HCC pathogenesis is not yet supported by consistent data. Analysis of somatic genetic alterations and gene expression profiles in HCC samples has provided relevant information on the genes involved in hepatocarcinogenesis, pinpointing a seminal molecular classification of the disease. Nonetheless, a comprehensive genomic analysis of HCC samples using high-resolution platforms in precisely annotated HCCs is clearly needed. Recent data have identified different signaling pathways in liver carcinogenesis (e.g., Wnt-βCatenin, Hedgehog, tyrosine kinase receptor-related pathways), providing an important potential source of novel molecular targets for new therapies. This review summarizes the most relevant information regarding structural and functional alterations in HCC and describes some of the key signaling pathways implicated in hepatocarcinogenesis.

REFERENCES

  • 1 Fattovich G, Stroffolini T, Zagni I, Donato F. Hepatocellular carcinoma in cirrhosis: incidence and risk factors.  Gastroenterology. 2004;  127(suppl 1) S35-S50
  • 2 El-Serag H B. Hepatocellular carcinoma: recent trends in the United States.  Gastroenterology. 2004;  127(suppl 1) S27-S34
  • 3 Parkin D M, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002.  CA Cancer J Clin. 2005;  55 74-108
  • 4 Llovet J M, Burroughs A, Bruix J. Hepatocellular carcinoma.  Lancet. 2003;  362 1907-1917
  • 5 Llovet J M, Bruix J. Systematic review of randomized trials for unresectable hepatocellular carcinoma: chemoembolization improves survival.  Hepatology. 2003;  37 429-442
  • 6 Bruix J, Boix L, Sala M, Llovet J M. Focus on hepatocellular carcinoma.  Cancer Cell. 2004;  5 215-219
  • 7 Farazi P A, DePinho R A. Hepatocellular carcinoma pathogenesis: from genes to environment.  Nat Rev Cancer. 2006;  6 674-687
  • 8 Jordan C T, Guzman M, Noble M L. Cancer stem cells.  N Engl J Med. 2006;  355 1253-1261
  • 9 Clevers H. Stem cells, asymmetric division and cancer.  Nat Genet. 2005;  37 1027-1028
  • 10 Mishra L, Shetty K, Tang Y, Stuart A, Byers S W. The role of TGF-beta and Wnt signaling in gastrointestinal stem cells and cancer.  Oncogene. 2005;  24 5775-5789
  • 11 Morrison S J, Kimble J. Asymmetric and symmetric stem-cell divisions in development and cancer.  Nature. 2006;  441 1068-1074
  • 12 Wicha M S, Liu S, Dontu G. Cancer stem cells: an old idea-a paradigm shift.  Cancer Res. 2006;  66 1883-1890 discussion 95-96
  • 13 Pecorino L. Molecular Biology of Cancer: Mechanisms, Targets, and Therapeutics. Oxford, UK; Oxford Press 2005
  • 14 Aractingi S, Kanitakis J, Euvrard S et al.. Skin carcinoma arising from donor cells in a kidney transplant recipient.  Cancer Res. 2005;  65 1755-1760
  • 15 Duelli D, Lazebnik Y. Cell fusion: a hidden enemy?.  Cancer Cell. 2003;  3 445-448
  • 16 Bergsmedh A, Szeles A, Henriksson M et al.. Horizontal transfer of oncogenes by uptake of apoptotic bodies.  Proc Natl Acad Sci USA. 2001;  98 6407-6411
  • 17 Holmgren L, Bergsmedh A, Spetz A L. Horizontal transfer of DNA by the uptake of apoptotic bodies.  Vox Sang. 2002;  83(suppl 1) 305-306
  • 18 Fausto N, Campbell J S. The role of hepatocytes and oval cells in liver regeneration and repopulation.  Mech Dev. 2003;  120 117-130
  • 19 Sell S. Heterogeneity and plasticity of hepatocyte lineage cells.  Hepatology. 2001;  33 738-750
  • 20 Shafritz D A, Dabeva M D. Liver stem cells and model systems for liver repopulation.  J Hepatol. 2002;  36 552-564
  • 21 Fausto N. Liver regeneration and repair: hepatocytes, progenitor cells, and stem cells.  Hepatology. 2004;  39 1477-1487
  • 22 Fausto N, Campbell J S, Riehle K J. Liver regeneration.  Hepatology. 2006;  43(suppl 1) S45-S53
  • 23 Thorgeirsson S S. Hepatic stem cells in liver regeneration.  FASEB J. 1996;  10 1249-1256
  • 24 Paku S, Schnur J, Nagy P, Thorgeirsson S S. Origin and structural evolution of the early proliferating oval cells in rat liver.  Am J Pathol. 2001;  158 1313-1323
  • 25 Knight B, Yeoh G C, Husk K L et al.. Impaired preneoplastic changes and liver tumor formation in tumor necrosis factor receptor type 1 knockout mice.  J Exp Med. 2000;  192 1809-1818
  • 26 Petersen B E, Grossbard B, Hatch H, Pi L, Deng J, Scott E W. Mouse A6-positive hepatic oval cells also express several hematopoietic stem cell markers.  Hepatology. 2003;  37 632-640
  • 27 Thorgeirsson S S, Grisham J W. Hematopoietic cells as hepatocyte stem cells: a critical review of the evidence.  Hepatology. 2006;  43 2-8
  • 28 Fuchs E, Tumbar T, Guasch G. Socializing with the neighbors: stem cells and their niche.  Cell. 2004;  116 769-778
  • 29 Roskams T. Liver stem cells and their implication in hepatocellular and cholangiocarcinoma.  Oncogene. 2006;  25 3818-3822
  • 30 Thorgeirsson S S, Grisham J W. Molecular pathogenesis of human hepatocellular carcinoma.  Nat Genet. 2002;  31 339-346
  • 31 Wilkens L, Bredt M, Flemming P, Klempnauer J, Heinrich Kreipe H. Differentiation of multicentric origin from intra-organ metastatic spread of hepatocellular carcinomas by comparative genomic hybridization.  J Pathol. 2000;  192 43-51
  • 32 Wong Q W, Wong N, Lai P B, To K F, Wong N. Clonal relationship of tumor nodules in hepatocellular carcinoma: a hierarchical clustering analysis of comparative genomic hybridization data.  Hum Pathol. 2005;  36 893-898
  • 33 Kallioniemi A, Kallioniemi O P, Sudar D et al.. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors.  Science. 1992;  258 818-821
  • 34 Bentz M, Plesch A, Stilgenbauer S, Dohner H, Lichter P. Minimal sizes of deletions detected by comparative genomic hybridization.  Genes Chromosomes Cancer. 1998;  21 172-175
  • 35 Speicher M R, Carter N P. The new cytogenetics: blurring the boundaries with molecular biology.  Nat Rev Genet. 2005;  6 782-792
  • 36 Moinzadeh P, Breuhahn K, Stutzer H, Schirmacher P. Chromosome alterations in human hepatocellular carcinomas correlate with aetiology and histological grade: results of an explorative CGH meta-analysis.  Br J Cancer. 2005;  92 935-941
  • 37 Guan X Y, Fang Y, Sham J S et al.. Recurrent chromosome alterations in hepatocellular carcinoma detected by comparative genomic hybridization.  Genes Chromosomes Cancer. 2000;  29 110-116
  • 38 Huang J, Sheng H H, Shen T et al.. Correlation between genomic DNA copy number alterations and transcriptional expression in hepatitis B virus-associated hepatocellular carcinoma.  FEBS Lett. 2006;  580 3571-3581
  • 39 Kusano N, Okita K, Shirahashi H et al.. Chromosomal imbalances detected by comparative genomic hybridization are associated with outcome of patients with hepatocellular carcinoma.  Cancer. 2002;  94 746-751
  • 40 Kusano N, Shiraishi K, Kubo K, Oga A, Okita K, Sasaki K. Genetic aberrations detected by comparative genomic hybridization in hepatocellular carcinomas: their relationship to clinicopathological features.  Hepatology. 1999;  29 1858-1862
  • 41 Lin Y W, Sheu J C, Huang G T et al.. Chromosomal abnormality in hepatocellular carcinoma by comparative genomic hybridisation in Taiwan.  Eur J Cancer. 1999;  35 652-658
  • 42 Marchio A, Meddeb M, Pineau P et al.. Recurrent chromosomal abnormalities in hepatocellular carcinoma detected by comparative genomic hybridization.  Genes Chromosomes Cancer. 1997;  18 59-65
  • 43 Pang A, Ng I O, Fan S T, Kwong Y L. Clinicopathologic significance of genetic alterations in hepatocellular carcinoma.  Cancer Genet Cytogenet. 2003;  146 8-15
  • 44 Patil M A, Gutgemann I, Zhang J et al.. Array-based comparative genomic hybridization reveals recurrent chromosomal aberrations and Jab1 as a potential target for 8q gain in hepatocellular carcinoma.  Carcinogenesis. 2005;  26 2050-2057
  • 45 Sy S M, Wong N, Lai P B, To K F, Johnson P J. Regional over-representations on chromosomes 1q, 3q and 7q in the progression of hepatitis B virus-related hepatocellular carcinoma.  Mod Pathol. 2005;  18 686-692
  • 46 Tornillo L, Carafa V, Richter J et al.. Marked genetic similarities between hepatitis B virus-positive and hepatitis C virus-positive hepatocellular carcinomas.  J Pathol. 2000;  192 307-312
  • 47 Wong N, Lai P, Lee S W et al.. Assessment of genetic changes in hepatocellular carcinoma by comparative genomic hybridization analysis: relationship to disease stage, tumor size, and cirrhosis.  Am J Pathol. 1999;  154 37-43
  • 48 Wong N, Lai P, Pang E et al.. Genomic aberrations in human hepatocellular carcinomas of differing etiologies.  Clin Cancer Res. 2000;  6 4000-4009
  • 49 Katoh H, Shibata T, Kokubu A et al.. Genetic profile of hepatocellular carcinoma revealed by array-based comparative genomic hybridization: identification of genetic indicators to predict patient outcome.  J Hepatol. 2005;  43 863-874
  • 50 Midorikawa Y, Yamamoto S, Ishikawa S et al.. Molecular karyotyping of human hepatocellular carcinoma using single-nucleotide polymorphism arrays.  Oncogene. 2006;  25 5581-5590
  • 51 Steinemann D, Skawran B, Becker T et al.. Assessment of differentiation and progression of hepatic tumors using array-based comparative genomic hybridization.  Clin Gastroenterol Hepatol. 2006;  4 1283-1291
  • 52 Adler A S, Lin M, Horlings H, Nuyten D S, van de Vijver M J, Chang H Y. Genetic regulators of large-scale transcriptional signatures in cancer.  Nat Genet. 2006;  38 421-430
  • 53 Raidl M, Pirker C, Schulte-Hermann R et al.. Multiple chromosomal abnormalities in human liver (pre)neoplasia.  J Hepatol. 2004;  40 660-668
  • 54 Buendia M A. Genetics of hepatocellular carcinoma.  Semin Cancer Biol. 2000;  10 185-200
  • 55 Jiang X, Hitchcock A, Bryan E J et al.. Microsatellite analysis of endometriosis reveals loss of heterozygosity at candidate ovarian tumor suppressor gene loci.  Cancer Res. 1996;  56 3534-3539
  • 56 Loukola A, Salovaara R, Kristo P et al.. Microsatellite instability in adenomas as a marker for hereditary nonpolyposis colorectal cancer.  Am J Pathol. 1999;  155 1849-1853
  • 57 Ho M K, Lee J M, Chan C K, Ng I O. Allelic alterations in nontumorous liver tissues and corresponding hepatocellular carcinomas from Chinese patients.  Hum Pathol. 2003;  34 699-705
  • 58 Koo S H, Ihm C H, Kwon K C, Lee J S, Park J W, Kim J W. Microsatellite alterations in hepatocellular carcinoma and intrahepatic cholangiocarcinoma.  Cancer Genet Cytogenet. 2003;  146 139-144
  • 59 Nagai H, Pineau P, Tiollais P, Buendia M A, Dejean A. Comprehensive allelotyping of human hepatocellular carcinoma.  Oncogene. 1997;  14 2927-2933
  • 60 Jou Y S, Lee C S, Chang Y H et al.. Clustering of minimal deleted regions reveals distinct genetic pathways of human hepatocellular carcinoma.  Cancer Res. 2004;  64 3030-3036
  • 61 Chang J, Kim N G, Piao Z et al.. Assessment of chromosomal losses and gains in hepatocellular carcinoma.  Cancer Lett. 2002;  182 193-202
  • 62 Laurent-Puig P, Legoix P, Bluteau O et al.. Genetic alterations associated with hepatocellular carcinomas define distinct pathways of hepatocarcinogenesis.  Gastroenterology. 2001;  120 1763-1773
  • 63 Chaubert P, Gayer R, Zimmermann A et al.. Germ-line mutations of the p16INK4(MTS1) gene occur in a subset of patients with hepatocellular carcinoma.  Hepatology. 1997;  25 1376-1381
  • 64 Sherr C J, McCormick F. The RB and p53 pathways in cancer.  Cancer Cell. 2002;  2 103-112
  • 65 Hupp T R, Lane D P, Ball K L. Strategies for manipulating the p53 pathway in the treatment of human cancer.  Biochem J. 2000;  352 1-17
  • 66 Anzola M, Saiz A, Cuevas N, Lopez-Martinez M, Martinez de Pancorbo M A, Burgos J J. High levels of p53 protein expression do not correlate with p53 mutations in hepatocellular carcinoma.  J Viral Hepat. 2004;  11 502-510
  • 67 Boix-Ferrero J, Pellin A, Blesa R, Adrados M, Llombart-Bosch A. Absence of p53 gene mutations in hepatocarcinomas from a Mediterranean area of Spain: a study of 129 archival tumour samples.  Virchows Arch. 1999;  434 497-501
  • 68 Bressac B, Kew M, Wands J, Ozturk M. Selective G to T mutations of p53 gene in hepatocellular carcinoma from southern Africa.  Nature. 1991;  350 429-431
  • 69 Buetow K H, Sheffield V C, Zhu M et al.. Low frequency of p53 mutations observed in a diverse collection of primary hepatocellular carcinomas.  Proc Natl Acad Sci USA. 1992;  89 9622-9626
  • 70 Challen C, Guo K, Collier J D, Cavanagh D, Bassendine M F. Infrequent point mutations in codons 12 and 61 of ras oncogenes in human hepatocellular carcinomas.  J Hepatol. 1992;  14 342-346
  • 71 Coursaget P, Depril N, Chabaud M et al.. High prevalence of mutations at codon 249 of the p53 gene in hepatocellular carcinomas from Senegal.  Br J Cancer. 1993;  67 1395-1397
  • 72 De Benedetti V M, Welsh J A, Yu M C, Bennett W P. p53 mutations in hepatocellular carcinoma related to oral contraceptive use.  Carcinogenesis. 1996;  17 145-149
  • 73 Diamantis I D, McGandy C, Chen T J, Liaw Y F, Gudat F, Bianchi L. A new mutational hot-spot in the p53 gene in human hepatocellular carcinoma.  J Hepatol. 1994;  20 553-556
  • 74 Elmileik H, Paterson A C, Kew M C. Beta-catenin mutations and expression, 249serine p53 tumor suppressor gene mutation, and hepatitis B virus infection in southern African Blacks with hepatocellular carcinoma.  J Surg Oncol. 2005;  91 258-263
  • 75 Hayashi H, Sugio K, Matsumata T et al.. The mutation of codon 249 in the p53 gene is not specific in Japanese hepatocellular carcinoma.  Liver. 1993;  13 279-281
  • 76 Hollstein M C, Wild C P, Bleicher F et al.. p53 mutations and aflatoxin B1 exposure in hepatocellular carcinoma patients from Thailand.  Int J Cancer. 1993;  53 51-55
  • 77 Honda K, Sbisa E, Tullo A et al.. p53 mutation is a poor prognostic indicator for survival in patients with hepatocellular carcinoma undergoing surgical tumour ablation.  Br J Cancer. 1998;  77 776-782
  • 78 Hosono S, Chou M J, Lee C S, Shih C. Infrequent mutation of p53 gene in hepatitis B virus positive primary hepatocellular carcinomas.  Oncogene. 1993;  8 491-496
  • 79 Hsia C C, Nakashima Y, Thorgeirsson S S et al.. Correlation of immunohistochemical staining and mutations of p53 in human hepatocellular carcinoma.  Oncol Rep. 2000;  7 353-356
  • 80 Jackson P E, Qian G S, Friesen M D et al.. Specific p53 mutations detected in plasma and tumors of hepatocellular carcinoma patients by electrospray ionization mass spectrometry.  Cancer Res. 2001;  61 33-35
  • 81 Karachristos A, Liloglou T, Field J K, Deligiorgi E, Kouskouni E, Spandidos D A. Microsatellite instability and p53 mutations in hepatocellular carcinoma.  Mol Cell Biol Res Commun. 1999;  2 155-161
  • 82 Katiyar S, Dash B C, Thakur V, Guptan R C, Sarin S K, Das B C. P53 tumor suppressor gene mutations in hepatocellular carcinoma patients in India.  Cancer. 2000;  88 1565-1573
  • 83 Kubicka S, Trautwein C, Schrem H, Tillmann H, Manns M. Low incidence of p53 mutations in European hepatocellular carcinomas with heterogeneous mutation as a rare event.  J Hepatol. 1995;  23 412-419
  • 84 Lunn R M, Zhang Y J, Wang L Y et al.. p53 mutations, chronic hepatitis B virus infection, and aflatoxin exposure in hepatocellular carcinoma in Taiwan.  Cancer Res. 1997;  57 3471-3477
  • 85 Murakami Y, Hayashi K, Hirohashi S, Sekiya T. Aberrations of the tumor suppressor p53 and retinoblastoma genes in human hepatocellular carcinomas.  Cancer Res. 1991;  51 5520-5525
  • 86 Ng I O, Srivastava G, Chung L P, Tsang S W, Ng M M. Overexpression and point mutations of p53 tumor suppressor gene in hepatocellular carcinomas in Hong Kong Chinese people.  Cancer. 1994;  74 30-37
  • 87 Nishida N, Fukuda Y, Kokuryu H et al.. Role and mutational heterogeneity of the p53 gene in hepatocellular carcinoma.  Cancer Res. 1993;  53 368-372
  • 88 Nose H, Imazeki F, Ohto M, Omata M. p53 gene mutations and 17p allelic deletions in hepatocellular carcinoma from Japan.  Cancer. 1993;  72 355-360
  • 89 Ozturk M. p53 mutation in hepatocellular carcinoma after aflatoxin exposure.  Lancet. 1991;  338 1356-1359
  • 90 Peng X M, Peng W W, Yao J L. Codon 249 mutations of p53 gene in development of hepatocellular carcinoma.  World J Gastroenterol. 1998;  4 125-127
  • 91 Scorsone K A, Zhou Y Z, Butel J S, Slagle B L. p53 mutations cluster at codon 249 in hepatitis B virus-positive hepatocellular carcinomas from China.  Cancer Res. 1992;  52 1635-1638
  • 92 Sheu J C, Huang G T, Lee P H et al.. Mutation of p53 gene in hepatocellular carcinoma in Taiwan.  Cancer Res. 1992;  52 6098-6100
  • 93 Shi C Y, Phang T W, Wee A et al.. Mutations of the tumour suppressor gene p53 in colorectal and hepatocellular carcinomas.  Ann Acad Med Singapore. 1995;  24 204-210
  • 94 Shimizu Y, Zhu J J, Han F, Ishikawa T, Oda H. Different frequencies of p53 codon-249 hot-spot mutations in hepatocellular carcinomas in Jiang-su province of China.  Int J Cancer. 1999;  82 187-190
  • 95 Sugo H, Takamori S, Kojima K, Beppu T, Futagawa S. The significance of p53 mutations as an indicator of the biological behavior of recurrent hepatocellular carcinomas.  Surg Today. 1999;  29 849-855
  • 96 Tanaka S, Toh Y, Adachi E, Matsumata T, Mori R, Sugimachi K. Tumor progression in hepatocellular carcinoma may be mediated by p53 mutation.  Cancer Res. 1993;  53 2884-2887
  • 97 Tannapfel A, Busse C, Weinans L et al.. INK4a-ARF alterations and p53 mutations in hepatocellular carcinomas.  Oncogene. 2001;  20 7104-7109
  • 98 Vautier G, Bomford A B, Portmann B C, Metivier E, Williams R, Ryder S D. p53 mutations in British patients with hepatocellular carcinoma: clustering in genetic hemochromatosis.  Gastroenterology. 1999;  117 154-160
  • 99 Yang M, Zhou H, Kong R Y et al.. Mutations at codon 249 of p53 gene in human hepatocellular carcinomas from Tongan, China.  Mutat Res. 1997;  381 25-29
  • 100 Smela M E, Hamm M L, Henderson P T, Harris C M, Harris T M, Essigmann J M. The aflatoxin B(1) formamidopyrimidine adduct plays a major role in causing the types of mutations observed in human hepatocellular carcinoma.  Proc Natl Acad Sci USA. 2002;  99 6655-6660
  • 101 Hayashi H, Sugio K, Matsumata T, Adachi E, Takenaka K, Sugimachi K. The clinical significance of p53 gene mutation in hepatocellular carcinomas from Japan.  Hepatology. 1995;  22 1702-1707
  • 102 Farazi P A, Glickman J, Horner J, Depinho R A. Cooperative interactions of p53 mutation, telomere dysfunction, and chronic liver damage in hepatocellular carcinoma progression.  Cancer Res. 2006;  66 4766-4773
  • 103 Lemmer E R, Friedman S L, Llovet J M. Molecular diagnosis of chronic liver disease and hepatocellular carcinoma: the potential of gene expression profiling.  Semin Liver Dis. 2006;  26 373-384
  • 104 Heller M J. DNA microarray technology: devices, systems, and applications.  Annu Rev Biomed Eng. 2002;  4 129-153
  • 105 Chen X, Cheung S T, So S et al.. Gene expression patterns in human liver cancers.  Mol Biol Cell. 2002;  13 1929-1939
  • 106 Xu X R, Huang J, Xu Z G et al.. Insight into hepatocellular carcinogenesis at transcriptome level by comparing gene expression profiles of hepatocellular carcinoma with those of corresponding noncancerous liver.  Proc Natl Acad Sci USA. 2001;  98 15089-15094
  • 107 Segal E, Friedman N, Kaminski N, Regev A, Koller D. From signatures to models: understanding cancer using microarrays.  Nat Genet. 2005;  37(suppl) S38-S45
  • 108 Wong Y F, Selvanayagam Z E, Wei N et al.. Expression genomics of cervical cancer: molecular classification and prediction of radiotherapy response by DNA microarray.  Clin Cancer Res. 2003;  9 5486-5492
  • 109 Lee J S, Chu I S, Heo J et al.. Classification and prediction of survival in hepatocellular carcinoma by gene expression profiling.  Hepatology. 2004;  40 667-676
  • 110 Greenbaum D, Baruch A, Hayrapetian L et al.. Chemical approaches for functionally probing the proteome.  Mol Cell Proteomics. 2002;  1 60-68
  • 111 International Human Genome Sequencing Consortium . Finishing the euchromatic sequence of the human genome.  Nature. 2004;  431 931-945
  • 112 Michiels S, Koscielny S, Hill C. Prediction of cancer outcome with microarrays: a multiple random validation strategy.  Lancet. 2005;  365 488-492
  • 113 Thorgeirsson S S, Lee J S, Grisham J W. Molecular prognostication of liver cancer: end of the beginning.  J Hepatol. 2006;  44 798-805
  • 114 Lee J S, Heo J, Libbrecht L et al.. A novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells.  Nat Med. 2006;  12 410-416
  • 115 Ye Q H, Qin L X, Forgues M et al.. Predicting hepatitis B virus-positive metastatic hepatocellular carcinomas using gene expression profiling and supervised machine learning.  Nat Med. 2003;  9 416-423
  • 116 Iizuka N, Oka M, Yamada-Okabe H et al.. Oligonucleotide microarray for prediction of early intrahepatic recurrence of hepatocellular carcinoma after curative resection.  Lancet. 2003;  361 923-929
  • 117 Kurokawa Y, Matoba R, Takemasa I et al.. Molecular-based prediction of early recurrence in hepatocellular carcinoma.  J Hepatol. 2004;  41 284-291
  • 118 Takeo S, Arai H, Kusano N et al.. Examination of oncogene amplification by genomic DNA microarray in hepatocellular carcinomas: comparison with comparative genomic hybridization analysis.  Cancer Genet Cytogenet. 2001;  130 127-132
  • 119 Anders R A, Yerian L M, Tretiakova M et al.. cDNA microarray analysis of macroregenerative and dysplastic nodules in end-stage hepatitis C virus-induced cirrhosis.  Am J Pathol. 2003;  162 991-1000
  • 120 Armengol C, Boix L, Bachs O et al.. p27(Kip1) is an independent predictor of recurrence after surgical resection in patients with small hepatocellular carcinoma.  J Hepatol. 2003;  38 591-597
  • 121 Boix L, Rosa J L, Ventura F et al.. c-met mRNA overexpression in human hepatocellular carcinoma.  Hepatology. 1994;  19 88-91
  • 122 de La Coste A, Romagnolo B, Billuart P et al.. Somatic mutations of the beta-catenin gene are frequent in mouse and human hepatocellular carcinomas.  Proc Natl Acad Sci USA. 1998;  95 8847-8851
  • 123 De Souza A T, Hankins G R, Washington M K, Orton T C, Jirtle R L. M6P/IGF2R gene is mutated in human hepatocellular carcinomas with loss of heterozygosity.  Nat Genet. 1995;  11 447-449
  • 124 Delpuech O, Trabut J B, Carnot F, Feuillard J, Brechot C, Kremsdorf D. Identification, using cDNA macroarray analysis, of distinct gene expression profiles associated with pathological and virological features of hepatocellular carcinoma.  Oncogene. 2002;  21 2926-2937
  • 125 Efimova E A, Glanemann M, Liu L et al.. Effects of human hepatocyte growth factor on the proliferation of human hepatocytes and hepatocellular carcinoma cell lines.  Eur Surg Res. 2004;  36 300-307
  • 126 Fields A C, Cotsonis G, Sexton D, Santoianni R, Cohen C. Survivin expression in hepatocellular carcinoma: correlation with proliferation, prognostic parameters, and outcome.  Mod Pathol. 2004;  17 1378-1385
  • 127 Goldenberg D, Ayesh S, Schneider T et al.. Analysis of differentially expressed genes in hepatocellular carcinoma using cDNA arrays.  Mol Carcinog. 2002;  33 113-124
  • 128 Guo X Z, Friess H, Di Mola F F et al.. KAI1, a new metastasis suppressor gene, is reduced in metastatic hepatocellular carcinoma.  Hepatology. 1998;  28 1481-1488
  • 129 Hanafusa T, Yumoto Y, Nouso K et al.. Reduced expression of insulin-like growth factor binding protein-3 and its promoter hypermethylation in human hepatocellular carcinoma.  Cancer Lett. 2002;  176 149-158
  • 130 Heinze T, Jonas S, Karsten A, Neuhaus P. Determination of the oncogenes p53 and C-erb B2 in the tumour cytosols of advanced hepatocellular carcinoma (HCC) and correlation to survival time.  Anticancer Res. 1999;  19 2501-2503
  • 131 Higashitsuji H, Higashitsuji H, Nagao T et al.. A novel protein overexpressed in hepatoma accelerates export of NF-kappa B from the nucleus and inhibits p53-dependent apoptosis.  Cancer Cell. 2002;  2 335-346
  • 132 Iizuka N, Oka M, Yamada-Okabe H et al.. Differential gene expression in distinct virologic types of hepatocellular carcinoma: association with liver cirrhosis.  Oncogene. 2003;  22 3007-3014
  • 133 Ikeguchi M, Ueta T, Yamane Y, Hirooka Y, Kaibara N. Inducible nitric oxide synthase and survivin messenger RNA expression in hepatocellular carcinoma.  Clin Cancer Res. 2002;  8 3131-3136
  • 134 Ito Y, Takeda T, Sakon M et al.. Expression and clinical significance of erb-B receptor family in hepatocellular carcinoma.  Br J Cancer. 2001;  84 1377-1383
  • 135 Kanai Y, Ushijima S, Hui A M et al.. The E-cadherin gene is silenced by CpG methylation in human hepatocellular carcinomas.  Int J Cancer. 1997;  71 355-359
  • 136 Li X, Nong Z, Ekstrom C et al.. Disrupted IGF2 promoter control by silencing of promoter P1 in human hepatocellular carcinoma.  Cancer Res. 1997;  57 2048-2054
  • 137 Matsuda Y, Ichida T, Matsuzawa J, Sugimura K, Asakura H. p16(INK4) is inactivated by extensive CpG methylation in human hepatocellular carcinoma.  Gastroenterology. 1999;  116 394-400
  • 138 Mise M, Arii S, Higashituji H et al.. Clinical significance of vascular endothelial growth factor and basic fibroblast growth factor gene expression in liver tumor.  Hepatology. 1996;  23 455-464
  • 139 Miura H, Miyazaki T, Kuroda M et al.. Increased expression of vascular endothelial growth factor in human hepatocellular carcinoma.  J Hepatol. 1997;  27 854-861
  • 140 Motoo Y, Sawabu N, Nakanuma Y. Expression of epidermal growth factor and fibroblast growth factor in human hepatocellular carcinoma: an immunohistochemical study.  Liver. 1991;  11 272-277
  • 141 Oka Y, Waterland R A, Killian J K et al.. M6P/IGF2R tumor suppressor gene mutated in hepatocellular carcinomas in Japan.  Hepatology. 2002;  35 1153-1163
  • 142 Okabe H, Satoh S, Kato T et al.. Genome-wide analysis of gene expression in human hepatocellular carcinomas using cDNA microarray: identification of genes involved in viral carcinogenesis and tumor progression.  Cancer Res. 2001;  61 2129-2137
  • 143 Paradis V, Bieche I, Dargere D et al.. Molecular profiling of hepatocellular carcinomas (HCC) using a large-scale real-time RT-PCR approach: determination of a molecular diagnostic index.  Am J Pathol. 2003;  163 733-741
  • 144 Prange W, Breuhahn K, Fischer F et al.. Beta-catenin accumulation in the progression of human hepatocarcinogenesis correlates with loss of E-cadherin and accumulation of p53, but not with expression of conventional WNT-1 target genes.  J Pathol. 2003;  201 250-259
  • 145 Qin L X, Tang Z Y. The prognostic molecular markers in hepatocellular carcinoma.  World J Gastroenterol. 2002;  8 385-392
  • 146 Shen L, Fang J, Qiu D et al.. Correlation between DNA methylation and pathological changes in human hepatocellular carcinoma.  Hepatogastroenterology. 1998;  45 1753-1759
  • 147 Song B C, Chung Y H, Kim J A et al.. Transforming growth factor-beta1 as a useful serologic marker of small hepatocellular carcinoma.  Cancer. 2002;  94 175-180
  • 148 Tanaka S, Mori M, Sakamoto Y, Makuuchi M, Sugimachi K, Wands J R. Biologic significance of angiopoietin-2 expression in human hepatocellular carcinoma.  J Clin Invest. 1999;  103 341-345
  • 149 Taniguchi K, Roberts L R, Aderca I N et al.. Mutational spectrum of beta-catenin, AXIN1, and AXIN2 in hepatocellular carcinomas and hepatoblastomas.  Oncogene. 2002;  21 4863-4871
  • 150 Torimura T, Ueno T, Kin M et al.. Overexpression of angiopoietin-1 and angiopoietin-2 in hepatocellular carcinoma.  J Hepatol. 2004;  40 799-807
  • 151 Ueki T, Fujimoto J, Suzuki T, Yamamoto H, Okamoto E. Expression of hepatocyte growth factor and its receptor c-met proto-oncogene in hepatocellular carcinoma.  Hepatology. 1997;  25 862-866
  • 152 Veikkola T, Alitalo K. VEGFs, receptors and angiogenesis.  Semin Cancer Biol. 1999;  9 211-220
  • 153 Wang W, Yang L Y, Huang G W et al.. Genomic analysis reveals RhoC as a potential marker in hepatocellular carcinoma with poor prognosis.  Br J Cancer. 2004;  90 2349-2355
  • 154 Wang Y, Wu M C, Sham J S, Zhang W, Wu W Q, Guan X Y. Prognostic significance of c-myc and AIB1 amplification in hepatocellular carcinoma: a broad survey using high-throughput tissue microarray.  Cancer. 2002;  95 2346-2352
  • 155 Wei Y, Van Nhieu J T, Prigent S, Srivatanakul P, Tiollais P, Buendia M A. Altered expression of E-cadherin in hepatocellular carcinoma: correlations with genetic alterations, beta-catenin expression, and clinical features.  Hepatology. 2002;  36 692-701
  • 156 Yakicier M C, Irmak M B, Romano A, Kew M, Ozturk M. Smad2 and Smad4 gene mutations in hepatocellular carcinoma.  Oncogene. 1999;  18 4879-4883
  • 157 Yamada T, De Souza A T, Finkelstein S, Jirtle R L. Loss of the gene encoding mannose 6-phosphate/insulin-like growth factor II receptor is an early event in liver carcinogenesis.  Proc Natl Acad Sci USA. 1997;  94 10351-10355
  • 158 Yao Y J, Ping X L, Zhang H et al.. PTEN/MMAC1 mutations in hepatocellular carcinomas.  Oncogene. 1999;  18 3181-3185
  • 159 Yoshiji H, Kuriyama S, Yoshii J et al.. Halting the interaction between vascular endothelial growth factor and its receptors attenuates liver carcinogenesis in mice.  Hepatology. 2004;  39 1517-1524
  • 160 Zhang X, Xu H J, Murakami Y et al.. Deletions of chromosome 13q, mutations in retinoblastoma 1, and retinoblastoma protein state in human hepatocellular carcinoma.  Cancer Res. 1994;  54 4177-4182
  • 161 Zhang L, Yu Q, He J, Zha X. Study of the PTEN gene expression and FAK phosphorylation in human hepatocarcinoma tissues and cell lines.  Mol Cell Biochem. 2004;  262 25-33
  • 162 Llovet J M, Chen Y, Wurmbach E et al.. A molecular signature to discriminate dysplastic nodules from early hepatocellular carcinoma in HCV-cirrhosis.  Gastroenterology. 2006;  131 1758-1767
  • 163 Lepourcelet M, Chen Y N, France D S et al.. Small-molecule antagonists of the oncogenic Tcf/beta-catenin protein complex.  Cancer Cell. 2004;  5 91-102
  • 164 Bell H S, Ryan K M. Intracellular signalling and cancer: complex pathways lead to multiple targets.  Eur J Cancer. 2005;  41 206-215
  • 165 Ben-Ze'ev A, Geiger B. Differential molecular interactions of beta-catenin and plakoglobin in adhesion, signaling and cancer.  Curr Opin Cell Biol. 1998;  10 629-639
  • 166 Huber A H, Weis W I. The structure of the beta-catenin/E-cadherin complex and the molecular basis of diverse ligand recognition by beta-catenin.  Cell. 2001;  105 391-402
  • 167 Oloumi A, McPhee T, Dedhar S. Regulation of E-cadherin expression and beta-catenin/Tcf transcriptional activity by the integrin-linked kinase.  Biochim Biophys Acta. 2004;  1691 1-15
  • 168 Giles R H, van Es J H, Clevers H. Caught up in a Wnt storm: Wnt signaling in cancer.  Biochim Biophys Acta. 2003;  1653 1-24
  • 169 Sparks A B, Morin P J, Vogelstein B, Kinzler K W. Mutational analysis of the APC/beta-catenin/Tcf pathway in colorectal cancer.  Cancer Res. 1998;  58 1130-1134
  • 170 Huang H, Fujii H, Sankila A et al.. Beta-catenin mutations are frequent in human hepatocellular carcinomas associated with hepatitis C virus infection.  Am J Pathol. 1999;  155 1795-1801
  • 171 Ishizaki Y, Ikeda S, Fujimori M et al.. Immunohistochemical analysis and mutational analyses of beta-catenin, Axin family and APC genes in hepatocellular carcinomas.  Int J Oncol. 2004;  24 1077-1083
  • 172 Legoix P, Bluteau O, Bayer J et al.. Beta-catenin mutations in hepatocellular carcinoma correlate with a low rate of loss of heterozygosity.  Oncogene. 1999;  18 4044-4046
  • 173 Cui J, Zhou X, Liu Y, Tang Z. Mutation and overexpression of the beta-catenin gene may play an important role in primary hepatocellular carcinoma among Chinese people.  J Cancer Res Clin Oncol. 2001;  127 577-581
  • 174 Cui J, Zhou X, Liu Y, Tang Z, Romeih M. Wnt signaling in hepatocellular carcinoma: analysis of mutation and expression of beta-catenin, T-cell factor-4 and glycogen synthase kinase 3-beta genes.  J Gastroenterol Hepatol. 2003;  18 280-287
  • 175 Hsu H C, Jeng Y M, Mao T L, Chu J S, Lai P L, Peng S Y. Beta-catenin mutations are associated with a subset of low-stage hepatocellular carcinoma negative for hepatitis B virus and with favorable prognosis.  Am J Pathol. 2000;  157 763-770
  • 176 Kondo Y, Kanai Y, Sakamoto M et al.. Beta-catenin accumulation and mutation of exon 3 of the beta-catenin gene in hepatocellular carcinoma.  Jpn J Cancer Res. 1999;  90 1301-1309
  • 177 Miyoshi Y, Iwao K, Nagasawa Y et al.. Activation of the beta-catenin gene in primary hepatocellular carcinomas by somatic alterations involving exon 3.  Cancer Res. 1998;  58 2524-2527
  • 178 Nhieu J T, Renard C A, Wei Y, Cherqui D, Zafrani E S, Buendia M A. Nuclear accumulation of mutated beta-catenin in hepatocellular carcinoma is associated with increased cell proliferation.  Am J Pathol. 1999;  155 703-710
  • 179 Park J Y, Park W S, Nam S W et al.. Mutations of beta-catenin and AXIN I genes are a late event in human hepatocellular carcinogenesis.  Liver Int. 2005;  25 70-76
  • 180 Terris B, Pineau P, Bregeaud L et al.. Close correlation between beta-catenin gene alterations and nuclear accumulation of the protein in human hepatocellular carcinomas.  Oncogene. 1999;  18 6583-6588
  • 181 Zucman-Rossi J, Jeannot E, Nhieu J T et al.. Genotype-phenotype correlation in hepatocellular adenoma: new classification and relationship with HCC.  Hepatology. 2006;  43 515-524
  • 182 Satoh S, Daigo Y, Furukawa Y et al.. AXIN1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virus-mediated transfer of AXIN1.  Nat Genet. 2000;  24 245-250
  • 183 Breuhahn K, Longerich T, Schirmacher P. Dysregulation of growth factor signaling in human hepatocellular carcinoma.  Oncogene. 2006;  25 3787-3800
  • 184 Merle P, de la Monte S, Kim M et al.. Functional consequences of frizzled-7 receptor overexpression in human hepatocellular carcinoma.  Gastroenterology. 2004;  127 1110-1122
  • 185 Inagawa S, Itabashi M, Adachi S et al.. Expression and prognostic roles of beta-catenin in hepatocellular carcinoma: correlation with tumor progression and postoperative survival.  Clin Cancer Res. 2002;  8 450-456
  • 186 Joo M, Lee H K, Kang Y K. Expression of beta-catenin in hepatocellular carcinoma in relation to tumor cell proliferation and cyclin D1 expression.  J Korean Med Sci. 2003;  18 211-217
  • 187 Lees C, Howie S, Sartor R B, Satsangi J. The hedgehog signalling pathway in the gastrointestinal tract: implications for development, homeostasis, and disease.  Gastroenterology. 2005;  129 1696-1710
  • 188 Taipale J, Beachy P A. The Hedgehog and Wnt signalling pathways in cancer.  Nature. 2001;  411 349-354
  • 189 Berman D M, Karhadkar S S, Hallahan A R et al.. Medulloblastoma growth inhibition by hedgehog pathway blockade.  Science. 2002;  297 1559-1561
  • 190 Berman D M, Karhadkar S S, Maitra A et al.. Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours.  Nature. 2003;  425 846-851
  • 191 Karhadkar S S, Bova G S, Abdallah N et al.. Hedgehog signalling in prostate regeneration, neoplasia and metastasis.  Nature. 2004;  431 707-712
  • 192 Thayer S P, di Magliano M P, Heiser P W et al.. Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis.  Nature. 2003;  425 851-856
  • 193 Watkins D N, Berman D M, Baylin S B. Hedgehog signaling: progenitor phenotype in small-cell lung cancer.  Cell Cycle. 2003;  2 196-198
  • 194 Watkins D N, Berman D M, Burkholder S G, Wang B, Beachy P A, Baylin S B. Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer.  Nature. 2003;  422 313-317
  • 195 Huang S, He J, Zhang X et al.. Activation of the hedgehog pathway in human hepatocellular carcinomas.  Carcinogenesis. 2006;  27 1334-1340
  • 196 Sicklick J K, Li Y X, Jayaraman A et al.. Dysregulation of the hedgehog pathway in human hepatocarcinogenesis.  Carcinogenesis. 2006;  27 748-757
  • 197 Osipo C, Miele L. Hedgehog signaling in hepatocellular carcinoma: novel therapeutic strategy targeting hedgehog signaling in HCC.  Cancer Biol Ther. 2006;  5 238-239
  • 198 Sordella R, Bell D W, Haber D A, Settleman J. Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways.  Science. 2004;  305 1163-1167
  • 199 Paez J G, Janne P A, Lee J C et al.. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy.  Science. 2004;  304 1497-1500
  • 200 Baylin S B, Ohm J E. Epigenetic gene silencing in cancer: a mechanism for early oncogenic pathway addiction?.  Nat Rev Cancer. 2006;  6 107-116
  • 201 Baselga J, Tripathy D, Mendelsohn J et al.. Phase II study of weekly intravenous trastuzumab (Herceptin) in patients with HER2/neu-overexpressing metastatic breast cancer.  Semin Oncol. 1999;  26(suppl 12) 78-83
  • 202 Cobleigh M A, Vogel C L, Tripathy D et al.. Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease.  J Clin Oncol. 1999;  17 2639-2648
  • 203 Nakopoulou L, Stefanaki K, Filaktopoulos D, Giannopoulou I. C-erb-B-2 oncoprotein and epidermal growth factor receptor in human hepatocellular carcinoma: an immunohistochemical study.  Histol Histopathol. 1994;  9 677-682
  • 204 Xian Z H, Zhang S H, Cong W M, Wu W Q, Wu M C. Overexpression/amplification of HER-2/neu is uncommon in hepatocellular carcinoma.  J Clin Pathol. 2005;  58 500-503
  • 205 Lee S C, Lim S G, Soo R et al.. Lack of somatic mutations in EGFR tyrosine kinase domain in hepatocellular and nasopharyngeal carcinoma.  Pharmacogenet Genomics. 2006;  16 73-74
  • 206 Su M C, Lien H C, Jeng Y M. Absence of epidermal growth factor receptor exon 18-21 mutation in hepatocellular carcinoma.  Cancer Lett. 2005;  224 117-121
  • 207 Huether A, Hopfner M, Sutter A P, Schuppan D, Scherubl H. Erlotinib induces cell cycle arrest and apoptosis in hepatocellular cancer cells and enhances chemosensitivity towards cytostatics.  J Hepatol. 2005;  43 661-669
  • 208 Huether A, Hopfner M, Baradari V, Schuppan D, Scherubl H. EGFR blockade by cetuximab alone or as combination therapy for growth control of hepatocellular cancer.  Biochem Pharmacol. 2005;  70 1568-1578
  • 209 Schiffer E, Housset C, Cacheux W et al.. Gefitinib, an EGFR inhibitor, prevents hepatocellular carcinoma development in the rat liver with cirrhosis.  Hepatology. 2005;  41 307-314
  • 210 Philip P A, Mahoney M R, Allmer C et al.. Phase II study of Erlotinib (OSI-774) in patients with advanced hepatocellular cancer.  J Clin Oncol. 2005;  23 6657-6663
  • 211 Dragan Y, Teeguarden J, Campbell H, Hsia S, Pitot H. The quantitation of altered hepatic foci during multistage hepatocarcinogenesis in the rat: transforming growth factor alpha expression as a marker for the stage of progression.  Cancer Lett. 1995;  93 73-83
  • 212 Petit A M, Rak J, Hung M C et al.. Neutralizing antibodies against epidermal growth factor and ErbB-2/neu receptor tyrosine kinases down-regulate vascular endothelial growth factor production by tumor cells in vitro and in vivo: angiogenic implications for signal transduction therapy of solid tumors.  Am J Pathol. 1997;  151 1523-1530
  • 213 Yamaguchi R, Yano H, Iemura A, Ogasawara S, Haramaki M, Kojiro M. Expression of vascular endothelial growth factor in human hepatocellular carcinoma.  Hepatology. 1998;  28 68-77
  • 214 Raskopf E, Dzienisowicz C, Hilbert T et al.. Effective angiostatic treatment in a murine metastatic and orthotopic hepatoma model.  Hepatology. 2005;  41 1233-1240
  • 215 Yu H, Rohan T. Role of the insulin-like growth factor family in cancer development and progression.  J Natl Cancer Inst. 2000;  92 1472-1489
  • 216 Yun K. A new marker for rhabdomyosarcoma: insulin-like growth factor II.  Lab Invest. 1992;  67 653-664
  • 217 Su Q, Liu Y F, Zhang J F, Zhang S X, Li D F, Yang J J. Expression of insulin-like growth factor II in hepatitis B, cirrhosis and hepatocellular carcinoma: its relationship with hepatitis B virus antigen expression.  Hepatology. 1994;  20 788-799
  • 218 Nardone G, Romano M, Calabro A et al.. Activation of fetal promoters of insulinlike growth factors II gene in hepatitis C virus-related chronic hepatitis, cirrhosis, and hepatocellular carcinoma.  Hepatology. 1996;  23 1304-1312
  • 219 Selden C, Farnaud S, Ding S F, Habib N, Foster C, Hodgson H J. Expression of hepatocyte growth factor mRNA, and c-met mRNA (hepatocyte growth factor receptor) in human liver tumours.  J Hepatol. 1994;  21 227-234
  • 220 Ueki T, Fujimoto J, Suzuki T, Yamamoto H, Okamoto E. Expression of hepatocyte growth factor and its receptor, the c-met proto-oncogene, in hepatocellular carcinoma.  Hepatology. 1997;  25 619-623
  • 221 Hynes N E, Lane H A. ERBB receptors and cancer: the complexity of targeted inhibitors.  Nat Rev Cancer. 2005;  5 341-354
  • 222 Grunewald K, Lyons J, Frohlich A et al.. High frequency of Ki-ras codon 12 mutations in pancreatic adenocarcinomas.  Int J Cancer. 1989;  43 1037-1041
  • 223 Ogata N, Kamimura T, Asakura H. Point mutation, allelic loss and increased methylation of c-Ha-ras gene in human hepatocellular carcinoma.  Hepatology. 1991;  13 31-37
  • 224 Tsuda H, Hirohashi S, Shimosato Y, Ino Y, Yoshida T, Terada M. Low incidence of point mutation of c-Ki-ras and N-ras oncogenes in human hepatocellular carcinoma.  Jpn J Cancer Res. 1989;  80 196-199
  • 225 Weihrauch M, Benick M, Lehner G et al.. High prevalence of K-ras-2 mutations in hepatocellular carcinomas in workers exposed to vinyl chloride.  Int Arch Occup Environ Health. 2001;  74 405-410
  • 226 Weihrauch M, Benicke M, Lehnert G, Wittekind C, Wrbitzky R, Tannapfel A. Frequent k-ras-2 mutations and p16(INK4A)methylation in hepatocellular carcinomas in workers exposed to vinyl chloride.  Br J Cancer. 2001;  84 982-989
  • 227 Sansal I, Sellers W R. The biology and clinical relevance of the PTEN tumor suppressor pathway.  J Clin Oncol. 2004;  22 2954-2963
  • 228 Risinger J I, Hayes A K, Berchuck A, Barrett J C. PTEN/MMAC1 mutations in endometrial cancers.  Cancer Res. 1997;  57 4736-4738
  • 229 Chiariello E, Roz L, Albarosa R, Magnani I, Finocchiaro G. PTEN/MMAC1 mutations in primary glioblastomas and short-term cultures of malignant gliomas.  Oncogene. 1998;  16 541-545
  • 230 Hashimoto K, Mori N, Tamesa T et al.. Analysis of DNA copy number aberrations in hepatitis C virus-associated hepatocellular carcinomas by conventional CGH and array CGH.  Mod Pathol. 2004;  17 617-622
  • 231 Fujiwara Y, Hoon D S, Yamada T et al.. PTEN/MMAC1 mutation and frequent loss of heterozygosity identified in chromosome 10q in a subset of hepatocellular carcinomas.  Jpn J Cancer Res. 2000;  91 287-292
  • 232 Wan X W, Wang H Y, Jiang M et al.. [PTEN expression and its significance in human primary hepatocellular carcinoma].  Zhonghua Gan Zang Bing Za Zhi. 2003;  11 490-492
  • 233 Yeh K T, Chang J G, Chen Y J et al.. Mutation analysis of the putative tumor suppressor gene PTEN/MMAC1 in hepatocellular carcinoma.  Cancer Invest. 2000;  18 123-129
  • 234 Whang Y E, Wu X, Suzuki H et al.. Inactivation of the tumor suppressor PTEN/MMAC1 in advanced human prostate cancer through loss of expression.  Proc Natl Acad Sci USA. 1998;  95 5246-5250
  • 235 Samuels Y, Wang Z, Bardelli A et al.. High frequency of mutations of the PIK3CA gene in human cancers.  Science. 2004;  304 554
  • 236 Bader A G, Kang S, Vogt P K. Cancer-specific mutations in PIK3CA are oncogenic in vivo.  Proc Natl Acad Sci USA. 2006;  103 1475-1479
  • 237 Kang S, Bader A G, Vogt P K. Phosphatidylinositol 3-kinase mutations identified in human cancer are oncogenic.  Proc Natl Acad Sci USA. 2005;  102 802-807
  • 238 Shayesteh L, Lu Y, Kuo W L et al.. PIK3CA is implicated as an oncogene in ovarian cancer.  Nat Genet. 1999;  21 99-102
  • 239 Lee J W, Soung Y H, Kim S Y et al.. PIK3CA gene is frequently mutated in breast carcinomas and hepatocellular carcinomas.  Oncogene. 2005;  24 1477-1480
  • 240 Tanaka Y, Kanai F, Tada M et al.. Absence of PIK3CA hotspot mutations in hepatocellular carcinoma in Japanese patients.  Oncogene. 2006;  25 2950-2952
  • 241 Nakanishi K, Sakamoto M, Yamasaki S, Todo S, Hirohashi S. Akt phosphorylation is a risk factor for early disease recurrence and poor prognosis in hepatocellular carcinoma.  Cancer. 2005;  103 307-312
  • 242 Bjornsti M A, Houghton P J. The TOR pathway: a target for cancer therapy.  Nat Rev Cancer. 2004;  4 335-348
  • 243 Vignot S, Faivre S, Aguirre D, Raymond E. mTOR-targeted therapy of cancer with rapamycin derivatives.  Ann Oncol. 2005;  16 525-537
  • 244 Sahin F, Kannangai R, Adegbola O, Wang J, Su G, Torbenson M. mTOR and P70 S6 kinase expression in primary liver neoplasms.  Clin Cancer Res. 2004;  10 8421-8425
  • 245 Schumacher G, Oidtmann M, Rueggeberg A et al.. Sirolimus inhibits growth of human hepatoma cells alone or combined with tacrolimus, while tacrolimus promotes cell growth.  World J Gastroenterol. 2005;  11 1420-1425
  • 246 Sarbassov D D, Guertin D A, Ali S M, Sabatini D M. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex.  Science. 2005;  307 1098-1101

Josep M LlovetM.D. 

Division of Liver Diseases, Mount Sinai School of Medicine

1425 Madison Avenue, 11F-70, Box 1123, New York, NY 10029

    >