Semin Speech Lang 2006; 27(4): 300-309
DOI: 10.1055/s-2006-955119
Copyright © 2006 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Clinical Implications of Cross-System Interactions

David H. McFarland1 , 2 , Pascale Tremblay2
  • 1École d'orthophonie et d'audiologie et centre de recherche en sciences neurologiques, Faculté de médecine, Université de Montréal
  • 2School of Communication Sciences and Disorders and Center for Research on Language, Mind and the Brain, McGill University, Montreal, Canada
Further Information

Publication History

Publication Date:
21 November 2006 (online)

Abstract

In this review, we briefly highlight potential cross-system interactions between swallowing and speech production, using data from recent neuroimaging studies, common clinical impairments, cross-system treatment effects, and developmental considerations as supporting evidence. Our overall hypothesis is that speech and swallowing (and other motor behaviors) are regulated through a shared network of brain regions and other neural processes that are modulated on the basis of specific task demands. We emphasize the clinical utility of viewing speech and swallowing as being closely linked from both a diagnostic and treatment perspective. We stress the importance of continuing research to explore the common and perhaps distinct neural circuitry underlying speech and swallowing and the clinical intervention strategies that attempt to capitalize on potential cross-system therapeutic benefits.

REFERENCES

  • 1 Gentilucci M, Benuzzi F, Gangitano M, Grimaldi S. Grasp with hand and mouth: a kinematic study on healthy subjects.  J Neurophysiol. 2001;  86(4) 1685-1699
  • 2 Smith A, McFarland D H, Weber C M. Interactions between speech and finger movements: an exploration on the dynamic pattern perspective.  J Speech Hear Res. 1986;  29(4) 471-480
  • 3 Kelso J A, Holt K G, Rubin P, Kugler P N. Patterns of human interlimb coordination emerge from the properties of non-linear, limit cycle oscillatory processes: theory and data.  J Mot Behav. 1981;  13 226-261
  • 4 Gentilucci M. Grasp observation influences speech production.  Eur J Neurosci. 2003;  17(1) 179-184
  • 5 Rizzolatti G. The mirror neuron system and its function in humans.  Anat Embryol (Berl). 2005;  210(5-6) 419-421
  • 6 Goffman L. Kinematic differentiation of prosodic categories in normal and disordered language development.  J Speech Lang Hear Res. 2004;  47(5) 1088-1102
  • 7 Weber-Fox C, Spencer R M, Spruill III J E, Smith A. Phonologic processing in adults who stutter: electrophysiological and behavioral evidence.  J Speech Lang Hear Res. 2004;  47(6) 1244-1258
  • 8 Lapointe J, McFarland D H. Pourquoi les orthophonistes devraient-ils s'intéresser à la dysphagie?.  Frequence. 2004;  16 22-25
  • 9 Ruber R J. Redefining the survival of the fittest: communication disorders in the 21st century.  Laryngoscope. 2000;  110 241-245
  • 10 Schindler J S, Kelly J H. Swallowing disorders in the elderly.  Laryngoscope. 2002;  112 589-602
  • 11 Byles J. The epidemiology of communication and swallowing disorders.  Adv Speech Lang Pathol. 2005;  7 1-7
  • 12 Cot F, McFarland D H. Anatomie-physiologie de la déglutition. In: Cot F La dysphagie oropharyngée chez l'adulte. Paris; EDros Inf ServEM 1996: 1-28
  • 13 Jean A. Brainstem control of swallowing: neuronal network and cellular mechanisms.  Physiol Rev. 2001;  81 929-969
  • 14 Jean A, Car A, Kessler J P. Brainstem organization of swallowing and its interaction with respiration. In Miller AD, Bianchi AL, Bishop BP Neural Control of the Respiratory Muscles. New York; CRC Press 1997: 223-237
  • 15 Martin R E, Goodyear B G, Gati J S, Menon R S. Cerebral cortical representation of automatic and volitional swallowing in humans.  J Neurophysiol. 2001;  85 938-950
  • 16 Sawczuk A, Mosier K M. Neural control of tongue movement with respect to respiration and swallowing.  Crit Rev Oral Biol Med. 2001;  12(1) 18-37
  • 17 McFarland D H, Lund J P. Modification of mastication and respiration during swallowing in the adult human.  J Neurophysiol. 1995b;  74 1509-1517
  • 18 Doty R W. Neural organization of deglutition. In: Code CF Handbook of Physiology. Alimentary Canal, Motility Washington, DC; American Physiological Society 1968: 1861-1902
  • 19 Von Euler C. Brain stem mechanisms for generation and control of breathing pattern. In: Fishman AP, Cherniak NS, Widdicombe JG, Geiger SR Handbook of Physiology. Section 3: The Respiratory System. Volume II. Control of Breathing. Bethesda, MD; American Physiological Society 1986: 1-67
  • 20 Bianchi A L, Pasaro R. Organization of central respiratory neurons. In: Miller AD, Bianchi AL Bishop BP Neural Control of the Respiratory Muscles. New York: CRC Press 1997:: 77-89
  • 21 Charbonneau I, Lund J P, McFarland D H. Breathing and swallowing coordination after laryngectomy.  J Speech Lang Hear Res. 2005;  48 34-44
  • 22 Gestreau C, Milano S, Bianchi A L, Grelot L. Activity of dorsal respiratory group inspiratory neurons during laryngeal-induced fictive coughing and swallowing in decerebrate cats.  Exp Brain Res. 1996;  108(2) 247-256
  • 23 Kessler J P, Jean A. Inhibition of the swallowing reflex by local application of serotonergic agents into the nucleus of the solitary tract.  Eur J Pharmacol. 1985;  118(1-2) 77-85
  • 24 Larson C R, Yajima Y, Ko P. Modification in activity of medullary respiratory-related neurons for vocalization and swallowing.  J Neurophysiol. 1994;  71(6) 2294-2304
  • 25 Miller A J. The search for the central swallowing pathway: the quest for clarity.  Dysphagia. 1993;  8(3) 185-194
  • 26 Oku Y, Tanaka I, Ezure K. Activity of bulbar respiratory neurons during fictive coughing and swallowing in the decerebrate cat.  J Physiol. 1994;  480(Pt 2) 309-324
  • 27 Dick T E, Oku Y, Romaniuk J R, Cherniack N S. Interaction between central pattern generators for breathing and swallowing in the cat.  J Physiol. 1993;  465 715-730
  • 28 Kawasaki M, Ogura J H, Takenouchi S. Neurophysiologic observations of normal deglutition. I. Its relationship to the respiratory cycle.  Laryngoscope. 1964;  74 1747-1765
  • 29 McFarland D H, Lund J P. An investigation of the coupling between respiration, mastication, and swallowing in the awake rabbit.  J Neurophysiol. 1993;  69 95-108
  • 30 McFarland D H, Lund J P. The control of speech. In: Cody FWJ Studies In Physiology-Neural Control of Skilled Human Movement. London; Portland Press 1995a: 61-75
  • 31 McFarland D H, Lund J P, Gagner M. Effects of posture on the coordination of respiration and swallowing.  J Neurophysiol. 1994;  72 2431-2437
  • 32 Palmer J B, Rudin N J, Lara G, Crompton A W. Coordination of mastication and swallowing.  Dysphagia. 1992;  7(4) 187-200
  • 33 Clark G A. Deglutition apnoea.  J Physiol. 1920;  54 LIX-LXI
  • 34 Nishino T, Sugimori K, Kohchi A, Hiraga K. Nasal constant positive airway pressure inhibits the swallowing reflex.  Am Rev Respir Dis. 1989;  140(5) 1290-1293
  • 35 Smith J, Wolkove N, Colacone A, Kreisman H. Coordination of eating, drinking and breathing in adults.  Chest. 1989;  96 578-582
  • 36 Miller A J. Deglutition.  Physiol Rev. 1982;  62(1) 129-184
  • 37 Ren J, Shaker R, Zamir Z, Dodds W J, Hogan W J, Hoffmann R G. Effect of age and bolus variables on the coordination of the glottis and upper esophageal sphincter during swallowing.  Am J Gastroenterol. 1993;  88(5) 665-669
  • 38 Shaker R, Dodds W J, Dantas R O, Hogan W J, Arndorfer R C. Coordination of deglutitive glottic closure with oropharyngeal swallowing.  Gastroenterology. 1990;  98(6) 1478-1484
  • 39 Martin-Harris B, Brodsky M B, Michel Y, Ford C L, Walters B, Heffner J. Breathing and swallowing dynamics across the adult lifespan.  Arch Otolaryngol Head Neck Surg. 2005b;  131 762-770
  • 40 Jacob P, Kahrilas P J, Logemann J A, Shah V, Ha T. Upper esophageal sphincter opening and modulation during swallowing.  Gastroenterology. 1989;  97 169-178
  • 41 Logemann J A, Kahrilas P J, Cheng J et al.. Closure mechanisms of the laryngeal vestibule during swallow.  Am J Physiol. 1992;  262 G338-G344
  • 42 Cook I J, Dodds W J, Dantas R O et al.. Timing of videofluoroscopic, manometric events, and bolus transit during the oral and pharyngeal phases of swallowing.  Dysphagia. 1989;  4 8-15
  • 43 Dantas R O, Kern M K, Massey B T et al.. Effect of swallowed bolus variables on oral and pharyngeal phases of swallowing.  Am J Physiol. 1990;  258(5 Pt 1) G675-G681
  • 44 Hiss S G, Treole K, Stuart A. Effects of age, gender, bolus volume, and trial on swallowing apnea duration and swallow/respiratory phase relationships of normal adults.  Dysphagia. 2001;  16 128-135
  • 45 Hiss S G, Strauss M, Treole K, Stuart A, Boutilier S. Effects of age, gender bolus volume, bolus viscosity, and gustation on swallowing apnea onset relative to lingual bolus propulsion onset in normal adults.  J Speech Lang Hear Res. 2004;  47 572-583
  • 46 Pouderoux P, Kahrilas P J. Deglutitive tongue force modulation by volition, volume and viscosity in humans.  Gastroenterology. 1995;  108 1418-1426
  • 47 Castell J A, Dalton C B, Castell D O. Effects of body position and bolus consistency on the manometric parameters and coordination of the upper esophageal sphincter and pharynx.  Dysphagia. 1990;  5(4) 179-186
  • 48 Martin-Harris B, Michel Y, Castell D O. Physiologic model of oropharyngeal swallowing revisited.  Otolaryngol Head Neck Surg. 2005a;  133 234-240
  • 49 Robbins J. The evolution of swallowing neuroanatomy and physiology in humans: a practical perspective.  Ann Neurol. 1999;  46(3) 279-280
  • 50 Price C J, Crinion J. The latest on functional imaging studies of aphasic stroke.  Curr Opin Neurol. 2005;  18 429-434
  • 51 Perkell J S, Matthies M L, Svirsky M A. Articulatory evidence for acoustic goals for consonants.  J Acoust Soc. 1994;  96 3326
  • 52 Guenther F H. Speech sound acquisition, coarticulation, and rate effects in a neural network model of speech production.  Psychol Rev. 1995;  102 594-621
  • 53 Perkell J S, Matthies M L, Lane H et al.. Speech motor control: acoustic goals, saturation effects, auditory feedback and internal models.  Speech Communication. 1997;  22 227-250
  • 54 McFarland D H, Baum S R, Chabot C. Speech compensation to structural modifications of the oral cavity.  J Acoust Soc Am. 1996;  100 1093-1104
  • 55 Ballard K J, Robin D A, Folkins J W. An integrative model of speech motor control: a response to Ziegler.  Aphasiology. 2003;  17 37-48
  • 56 Ziegler W. Speech motor control is task-specific. Evidence from dysarthria and apraxia of speech.  Aphasiology. 2003;  17 3-36
  • 57 Kern M, Birn R, Jaradeh S et al.. Swallow-related cerebral cortical activity maps are not specific to deglutition.  Am J Physiol Gastrointest Liver Physiol. 2001;  280(4) G531-G538
  • 58 Mosier K, Bereznaya I. Parallel cortical networks for volitional control of swallowing in humans.  Exp Brain Res. 2001;  140(3) 280-289
  • 59 Suzuki M, Asada Y, Ito J, Hayashi K, Inoue H, Kitano H. Activation of cerebellum and basal ganglia on volitional swallowing detected by functional magnetic resonance imaging.  Dysphagia. 2003;  18(2) 71-77
  • 60 Martin R E, MacIntosh B J, Smith R C et al.. Cerebral areas processing swallowing and tongue movement are overlapping but distinct: a functional magnetic resonance imaging study.  J Neurophysiol. 2004;  92(4) 2428-2443
  • 61 Zald D H, Pardo J V. The functional neuroanatomy of voluntary swallowing.  Ann Neurol. 1999;  46 281-286
  • 62 Toogood J A, Barr A M, Stevens T K, Gati J S, Menon R S, Martin R E. Discrete functional contributions of cerebral cortical foci in voluntary swallowing: a functional magnetic resonance imaging (fMRI) “Go, No-Go” study.  Exp Brain Res. 2005;  161(1) 81-90
  • 63 Satow T, Ikeda A, Yamamoto J et al.. Role of primary sensorimotor cortex and supplementary motor area in volitional swallowing: a movement-related cortical potential study.  Am J Physiol Gastrointest Liver Physiol. 2004;  287(2) G459-G470
  • 64 Bookheimer S Y, Zeffiro T A, Blaxton T A, Gaillard P W, Theodore W H. Activation of language cortex with automatic speech tasks.  Neurology. 2000;  55(8) 1151-1157
  • 65 Riecker A, Ackermann H, Wildgruber D et al.. Articulatory/phonetic sequencing at the level of the anterior perisylvian cortex: a functional magnetic resonance imaging (fMRI) study.  Brain Lang. 2000;  75(2) 259-276
  • 66 Saarinen T, Laaksonen H, Parviainen T, Salmelin R. Motor cortex dynamics in visuomotor production of speech and non-speech mouth movements.  Cereb Cortex. 2006;  16(2) 212-222
  • 67 Corfield D R, Murphy K, Josephs O et al.. Cortical and subcortical control of tongue movement in humans: a functional neuroimaging study using fMRI.  J Appl Physiol. 1999;  86(5) 1468-1477
  • 68 Watanabe J, Sugiura M, Miura N et al.. The human parietal cortex is involved in spatial processing of tongue movement-an fMRI study.  Neuroimage. 2004;  21(4) 1289-1299
  • 69 Deiber M P, Ibanez V, Sadato N, Hallett M. Cerebral structures participating in motor preparation in humans: a positron emission tomography study.  J Neurophysiol. 1996;  75(1) 233-247
  • 70 Lee K M, Chang K H, Roh J K. Subregions within the supplementary motor area activated at different stages of movement preparation and execution.  Neuroimage. 1999;  9(1) 117-123
  • 71 Kurata K, Tsuji T, Naraki S, Seino M, Abe Y. Activation of the dorsal premotor cortex and pre-supplementary motor area of humans during an auditory conditional motor task.  J Neurophysiol. 2000;  84(3) 1667-1672
  • 72 Binkofski F, Buccino G, Posse S, Seitz R J, Rizzolatti G, Freund H. A fronto-parietal circuit for object manipulation in man: evidence from an fMRI-study.  Eur J Neurosci. 1999;  11(9) 3276-3286
  • 73 Gerardin E, Sirigu A, Lehericy S et al.. Partially overlapping neural networks for real and imagined hand movements.  Cereb Cortex. 2000;  10(11) 1093-1104
  • 74 Iacoboni M, Woods R P, Brass M, Bekkering H, Mazziotta J C, Rizzolatti G. Cortical mechanisms of human imitation.  Science. 1999;  286(5449) 2526-2528
  • 75 Koski L, Wohlschlager A, Bekkering H et al.. Modulation of motor and premotor activity during imitation of target-directed actions.  Cereb Cortex. 2002;  12(8) 847-855
  • 76 Buccino G, Binkofski F, Fink G R et al.. Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study.  Eur J Neurosci. 2001;  13(2) 400-404
  • 77 Ross M G, Nijland M J. Fetal swallowing: relation to amniotic fluid regulation.  Clin Obstet Gynecol. 1997;  40 352-365
  • 78 Ross M G, Nijland M J. Development of ingestive behavior.  Am J Physiol. 1998;  274 R879-R893
  • 79 Illingworth R S, Lister J. The critical or sensitive period, with special reference to certain feeding problems in infants and children.  J Pediatr. 1964;  65 839-848
  • 80 Mayberry R I, Eichen E B. The long-lasting advantage of learning sign language in childhood: Another look at the critical period for language acquisition.  J Mem Lang. 1991;  30 486-512
  • 81 Noterdaeme M, Mildenberger K, Minow F, Amorosa H. Evaluation of neuromotor deficits in children with autism and children with a specific speech and language disorder.  Eur Child Adolesc Psychiatry. 2002;  11 219-225
  • 82 Robbins J A, Hamilton J W, Lof G L, Kempster G. Oropharyngeal swallowing in normal adults of different ages.  Gastroenterology. 1992;  103 823-829
  • 83 Kramer A F, Bherer L, Colcombe S J, Dong W, Greenough W T. Environmental influences on cognitive and brain plasticity during aging.  J Gerontol A Biol Sci Med Sci. 2004;  59 M940-M957
  • 84 Sawaki L, Yaseen Z, Kopylev L, Cohen L G. Age-dependent changes in the ability to encode a novel elementary motor memory.  Ann Neurol. 2003;  53 521-524
  • 85 Bwielamowicz S, Gupta A, Sekhar L N. Early arytenoid adduction for vagal paralysis after skull base surgery.  Laryngoscope. 2000;  110 346-351
  • 86 Cornwell P L, Murdoch B E, Ward E C, Morgan A. Dysarthria and dysphagia as long-term sequelae in a child treated for posterior fossa tumour.  Pediatr Rehabil. 2003;  6 67-75
  • 87 Dworkin J P, Hartman D E. Progressive speech deterioration in dysphagia in amyotrophic lateral sclerosis: case report.  Arch Phys Med Rehabil. 1979;  60 423-425
  • 88 Muller J, Wenning G K, Verny M, Litvan I et al.. Progression of dysarthria and dysphagia in postmortem-confirmed parkinsonian disorders.  Arch Neurol. 2001;  58 259-264
  • 89 Nishio M, Niimi S. Relationship between speech and swallowing disorders in patients with neuromuscular disease.  Folia Phoniatr Logop. 2004;  56 291-304
  • 90 Litvan I, Sastry N, Sonies B C. Characterizing swallowing abnormalities in progressive supranuclear palsy.  Neurology. 1997;  48 1654-1662
  • 91 Martin B JW, Corlew M M. The incidence of communication disorders in dysphagic patients.  J Speech Hear Disord. 1990;  55 28-32
  • 92 Burres S. Intralingual injection of particulate fascia for tongue paralysis.  Laryngoscope. 2004;  114 1204-1205
  • 93 El-Sharkawi A, Ramig L, Logemann J et al.. Swallowing and voice effects of Lee Silverman Voice Treatment: a pilot study.  J Neurol Neuro surg Psychiatry. 2002;  72 31-36
  • 94 Farley B G, Koshland G F. Training BIG to move faster: the application of the speed-amplitude relation as a rehabilitation strategy for people with Parkinson's disease.  Exp Brain Res. 2005;  167 462-467
  • 95 Farley B G, Koshland G F. Learning Big: efficacy of a large-amplitude exercise approach for patients with Parkinson's disease-bradykinesia to balance.  Mov Disord. 2005b;  20(10) S137
  • 96 Fox C M, Farley B G, Ramig L O, McFarland D. An integrated rehabilitation approach to Parkinson's disease: learning big and loud.  Mov Disord. 2005;  20(10) S127

David H McFarland

Université de Montréal, Faculté de médecine, École d'orthophonie et d'audiologie

C.P. 6128, Succursale Centre-Ville, Montréal, Québec, H3C 3J7 Canada

Email: David.McFarland@umontreal.ca

    >