Horm Metab Res 2006; 38(11): 732-739
DOI: 10.1055/s-2006-955084
Original Basic

© Georg Thieme Verlag KG Stuttgart · New York

Generation of Reactive Oxygen Species by Endothelial and Smooth Muscle Cells: Influence of Hyperglycemia and Metformin

C. Bellin 1 , D. H. de Wiza 1 , N. F. Wiernsperger 1 , 2 , P. Rösen 1
  • 1German Diabetes Research Centre, Düsseldorf, Germany
  • 2INSERM UMR585, INSA Lyon, Lyon, France
Further Information

Publication History

Received 16 March 2006

Accepted after revision 15 August 2006

Publication Date:
16 November 2006 (online)


There is evidence that reactive oxygen intermediates (ROI) play an important role in the pathogenesis of vascular complications in diabetes. On the other hand, metformin, one of the most often used antidiabetic compounds has not only been shown to reduce the risk for vascular complications, but in addition these protective effects are largely independent of its well-known antihyperglycemic action. Therefore, to explain the vasculoprotective effects of metformin, a direct antioxidative action of this compound has been suggested. We show here that human endothelial cells (HUVEC) generate ROI not only in response to high glucose (30 mmol/l glucose), but also in response to palmitic acid, and advanced glycation end-products (carboxymethyllysine and S100 proteins). Metformin inhibited the production of ROI in response to all these stimuli. By double staining-dichlorofluorescein as marker of ROI and Mitotracker CMH-Ros for mitochondria-the mechanism of ROI generation was analyzed in more detail in smooth muscle cells. Our data suggest that ROI are generated by uncoupling of the mitochondrial respiratory chain as well as by activation of the cytosolic NADPH-oxidase. A complete inhibition of ROI generation is only achieved by simultaneous inhibition of the mitochondrial electron flux (theonyltrifluoroacetone) and NADPH-oxidase (apocynin). Our data suggest that the various processes contributing to generation of ROI are closely linked. Activation of AMP kinase may represent an important mechanism to understand the antioxidative effects of metformin on the mitochondrial and cytosolic generation of ROI.


  • 1 Brownlee M. Biochemistry and molecular cell biology of diabetic complications.  Nature. 2001;  414 813-820
  • 2 Rosen P, Nawroth PP, King G, Moller W, Tritschler HJ, Packer L. The role of oxidative stress in the onset and progression of diabetes and its complications: a summary of a Congress Series sponsored by UNESCO-MCBN, the American Diabetes Association and the German Diabetes Society.  Diabetes Metab Res Rev. 2001;  17 189-212
  • 3 Baynes JW. Role of oxidative stress in development of complications in diabetes.  Diabetes. 1991;  40 405-412
  • 4 Baynes JW, Thorpe SR. Glycoxidation and lipoxidation in atherogenesis.  Free Radic Biol Med. 2000;  28 1708-1716
  • 5 Du X, Stocklauser-Farber K, Rosen P. Generation of reactive oxygen intermediates, activation of NF-kappaB, and induction of apoptosis in human endothelial cells by glucose: role of nitric oxide synthase?.  Free Radic Biol Med. 1999;  27 752-763
  • 6 Davi G, Ciabattoni G, Consoli A, Mezzetti A, Falco A, Santarone S, Pennese E, Vitacolonna E, Bucciarelli T, Costantini F, Capani F, Patrono C. In vivo formation of 8-iso-prostaglandin f2alpha and platelet activation in diabetes mellitus: effects of improved metabolic control and vitamin E supplementation.  Circulation. 1999;  99 224-229
  • 7 Davi G, Chiarelli F, Santilli F, Pomilio M, Vigneri S, Falco A, Basili S, Ciabattoni G, Patrono C. Enhanced lipid peroxidation and platelet activation in the early phase of type 1 diabetes mellitus: role of interleukin-6 and disease duration.  Circulation. 2003;  107 3199-3203
  • 8 Nishikawa T, Edelstein D, Brownlee M. The missing link: a single unifying mechanism for diabetic complications.  Kidney Int Suppl. 2000;  77 S26-S30
  • 9 Inoguchi T, Sonta T, Tsubouchi H, Etoh T, Kakimoto M, Sonoda N, Sato N, Sekiguchi N, Kobayashi K, Sumimoto H, Utsumi H, Nawata H. Protein kinase C-dependent increase in reactive oxygen species (ROS) production in vascular tissues of diabetes: role of vascular NAD(P)H oxidase.  J Am Soc Nephrol. 2003;  14 S227-S232
  • 10 Wautier MP, Chappey O, Corda S, Stern DM, Schmidt AM, Wautier JL. Activation of NADPH oxidase by AGE links oxidant stress to altered gene expression via RAGE.  Am J Physiol Endocrinol Metab. 2001;  280 E685-E694
  • 11 Hink U, Li H, Mollnau H, Oelze M, Matheis E, Hartmann M, Skatchkov M, Thaiss F, Stahl RA, Warnholtz A, Meinertz T, Griendling K, Harrison DG, Forstermann U, Munzel T. Mechanisms underlying endothelial dysfunction in diabetes mellitus.  Circ Res. 2001;  88 E14-E22
  • 12 Wolff SP. Diabetes mellitus and free radicals. Free radicals, transition metals and oxidative stress in the aetiology of diabetes mellitus and complications.  Br Med Bull. 1993;  49 642-652
  • 13 UK Prospective Diabetes Study (UKPDS) Group . Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34).  Lancet. 1998;  352 865
  • 14 Katakam PV, Ujhelyi MR, Hoenig M, Miller AW. Metformin improves vascular function in insulin-resistant rats.  Hypertension. 2000;  35 108-112
  • 15 Marfella R, Acampora R, Verrazzo G, Ziccardi P, De Rosa N, Giunta R, Giugliano D. Metformin improves hemodynamic and rheological responses to L-arginine in NIDDM patients.  Diabetes Care. 1996;  19 934-939
  • 16 Wiernsperger NF. Metformin: Intrinsic vasculoprotective properties.  Diabetes Technol Ther. 2000;  2 272
  • 17 Gallo A, Ceolotto G, Pinton P, Iori E, Murphy E, Rutter GA, Rizzuto R, Semplicini A, Avogaro A. Metformin prevents glucose-induced protein kinase C-beta2 activation in human umbilical vein endothelial cells through an antioxidant mechanism.  Diabetes. 2005;  54 1123-1131
  • 18 Brunmair B, Staniek K, Gras F, Scharf N, Althaym A, Clara R, Roden M, Gnaiger E, Nohl H, Waldhausl W, Furnsinn C. Thiazolidinediones, like metformin, inhibit respiratory complex I: a common mechanism contributing to their antidiabetic actions?.  Diabetes. 2004;  53 1052-1059
  • 19 Leverve XM, Guigas B, Detaille D, Batandier C, Koceir EA, Chauvin C, Fontaine E, Wiernsperger NF. Mitochondrial metabolism and type-2 diabetes: a specific target of metformin.  Diabetes Metab. 2003;  29 6S88-6S94
  • 20 Owen MR, Doran E, Halestrap AP. Evidence that metformin exerts its antidiabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain.  Biochem J. 2000;  348 ((Pt 3)) 607-614
  • 21 Jaffe EA, Nachman RL, Becker CG, Minick CR. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria.  J Clin Invest. 1973;  52 2745-2756
  • 22 Battle T, Arnal JF, Challah M, Michel JB. Selective isolation of rat aortic wall layers and their cell types in culture-application to converting enzyme activity measurement.  Tissue Cell. 1994;  26 943-955
  • 23 Hornebeck W, Brechemier D, Bourdillon MC, Robert L. Isolation and partial characterization of an elastase-like protease from rat aorta smooth muscle cells. Possible role in the regulation of elastin biosynthesis.  Connect Tissue Res. 1981;  8 245-249
  • 24 Diglio CA, Grammas P, Giacomelli F, Wiener J. Angiogenesis in rat aorta ring explant cultures.  Lab Invest. 1989;  60 523-531
  • 25 Villaschi S, Nicosia RF, Smith MR. Isolation of a morphologically and functionally distinct smooth muscle cell type from the intimal aspect of the normal rat aorta. Evidence for smooth muscle cell heterogeneity.  In Vitro Cell Dev Biol Anim. 1994;  30A 589-595
  • 26 Macho A, Decaudin D, Castedo M, Hirsch T, Susin SA, Zamzami N, Kroemer G. Chloromethyl-X-Rosamine is an aldehyde-fixable potential-sensitive fluorochrome for the detection of early apoptosis.  Cytometry. 1996;  25 333-340
  • 27 Zou MH, Kirkpatrick SS, Davis BJ, Nelson JS, Wiles WG, Schlattner U, Neumann D, Brownlee M, Freeman MB, Goldman MH. Activation of the AMP-activated protein kinase by the antidiabetic drug metformin in vivo. Role of mitochondrial reactive nitrogen species.  J Biol Chem. 2004;  279 43940-43951
  • 28 Schmidt AM, Hori O, Brett J, Yan SD, Wautier JL, Stern D. Cellular receptors for advanced glycation end products. Implications for induction of oxidant stress and cellular dysfunction in the pathogenesis of vascular lesions.  Arterioscler Thromb. 1994;  14 1521-1528
  • 29 Yan SD, Schmidt AM, Anderson GM, Zhang J, Brett J, Zou YS, Pinsky D, Stern D. Enhanced cellular oxidant stress by the interaction of advanced glycation end products with their receptors/binding proteins.  J Biol Chem. 1994;  269 9889-9897
  • 30 Bierhaus A, Schiekofer S, Schwaninger M, Andrassy M, Humpert PM, Chen J, Hong M, Luther T, Henle T, Kloting I, Morcos M, Hofmann M, Tritschler H, Weigle B, Kasper M, Smith M, Perry G, Schmidt AM, Stern DM, Haring HU, Schleicher E, Nawroth PP. Diabetes-associated sustained activation of the transcription factor nuclear factor-kappaB.  Diabetes. 2001;  50 2792-2808
  • 31 Hofmann MA, Drury S, Fu C, Qu W, Taguchi A, Lu Y, Avila C, Kambham N, Bierhaus A, Nawroth P, Neurath MF, Slattery T, Beach D, McClary J, Nagashima M, Morser J, Stern D, Schmidt AM. RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides.  Cell. 1999;  97 889-901
  • 32 Nerlich AG, Schleicher ED. N(epsilon)(carboxymethyl)lysine in atherosclerotic vascular lesions as a marker for local oxidative stress.  Atherosclerosis. 1999;  144 41-47
  • 33 Ouslimani N, Peynet J, Bonnefont-Rousselot D, Therond P, Legrand A, Beaudeux JL. Metformin decreases intracellular production of reactive oxygen species in aortic endothelial cells.  Metabolism. 2005;  54 829-834
  • 34 Inoguchi T, Li P, Umeda F, Yu HY, Kakimoto M, Imamura M, Aoki T, Etoh T, Hashimoto T, Naruse M, Sano H, Utsumi H, Nawata H. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD(P)H oxidase in cultured vascular cells.  Diabetes. 2000;  49 1939-1945
  • 35 Seufert J, Lubben G, Dietrich K, Bates PC. A comparison of the effects of thiazolidinediones and metformin on metabolic control in patients with type 2 diabetes mellitus.  Clin Ther. 2004;  26 805-818
  • 36 Detaille D, Guigas B, Chauvin C, Batandier C, Fontaine E, Wiernsperger N, Leverve X. Metformin Prevents High-Glucose-Induced Endothelial Cell Death Through a Mitochondrial Permeability Transition-Dependent Process.  Diabetes. 2005;  54 2179-2187
  • 37 Batandier C, Guigas B, Detaille D, El-Mir M, Yehia Fontaine E, Rigoulet M, Leverve XM. The ROS production induced by a reverse-electron flux at respiratory-chain complex 1 is hampered by metformin.  J Bioenerg Biomembr. 2006;  , in press
  • 38 Ritov VB, Kelley DE. Hexokinase isozyme distribution in human skeletal muscle.  Diabetes. 2001;  50 1253-1262
  • 39 Tsuura Y, Ishida H, Okamoto Y, Kato S, Sakamoto K, Horie M, Ikeda H, Okada Y, Seino Y. Glucose sensitivity of ATP-sensitive K+ channels is impaired in beta-cells of the GK rat. A new genetic model of NIDDM.  Diabetes. 1993;  42 1446-1453
  • 40 Davis BJ, Xie Z, Viollet B, Zou MH. Activation of the AMP-activated kinase by antidiabetes drug metformin stimulates nitric oxide synthesis in vivo by promoting the association of heat shock protein 90 and endothelial nitric oxide synthase.  Diabetes. 2006;  55 496-505
  • 41 Du XL, Sui GZ, Stockklauser-Farber K, Weiss J, Zink S, Schwippert B, Wu QX, Tschöpe D, Rösen P. Induction of apoptosis by high proinsulin and glucose in cultured human umbilical vein endothelial cells is mediated by reactive oxygen species [see comments].  Diabetologia. 1998;  41 249-256
  • 42 Hawley SA, Gadalla AE, Olsen GS, Hardie DG. The antidiabetic drug metformin activates the AMP-activated protein kinase cascade via an adenine nucleotide-independent mechanism.  Diabetes. 2002;  51 2420-2425
  • 43 Pritchard Jr KA, Ackerman AW, Gross ER, Stepp DW, Shi Y, Fontana JT, Baker JE, Sessa WC. Heat shock protein 90 mediates the balance of nitric oxide and superoxide anion from endothelial nitric-oxide synthase.  J Biol Chem. 2001;  276 17621-17624
  • 44 Schwartz JH, White CA, Freeman BA. Do we kNOw how HSP90 and eNOS mediate lung injury in sickle cell disease?.  Am J Physiol Lung Cell Mol Physiol. 2004;  286 L701-L704
  • 45 Li L, Mamputu JC, Wiernsperger N, Renier G. Signaling pathways involved in human vascular smooth muscle cell proliferation and matrix metalloproteinase-2 expression induced by leptin: inhibitory effect of metformin.  Diabetes. 2005;  54 2227-2234
  • 46 Shinozaki K, Kashiwagi A, Nishio Y, Okamura T, Yoshida Y, Masada M, Toda N, Kikkawa R. Abnormal biopterin metabolism is a major cause of impaired endothelium-dependent relaxation through nitric oxide/O2- imbalance in insulin-resistant rat aorta.  Diabetes. 1999;  48 2437-2445
  • 47 Chakravarthy U, Hayes RG, Stitt AW, McAuley E, Archer DB. Constitutive nitric oxide synthase expression in retinal vascular endothelial cells is suppressed by high glucose and advanced glycation end products.  Diabetes. 1998;  47 945-952
  • 48 Detaille D, Wiernsperger N, Devos P. Potentiating effect of metformin on insulin-induced glucose uptake and glycogen metabolism with Xenopus oocytes.  Diabetologia. 1998;  41 2-8


Prof. Dr. P. Rösen

German Diabetes Research Centre·Leibniz Institute at the Heinrich-Heine-University

Auf'm Hennekamp 65

40225 Düsseldorf

Phone: +49/211/33 82 56 2

Fax: +49/211/33 82 43 0

Email: roesen@uni-duesseldorf.de